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Abstract Generative design is used to efficiently generate design solutions with powerful computational
methods. Generative design based on shape grammar is currently the most commonly used approach,
but it is difficult for shape grammar to formally analyze the generated pattern. Graph grammar derived
from one-dimensional character grammar is mainly used for generating and analyzing abstract models
of visual languages. However, there is a significant gap between the generated node-edge graphs and
the representation of shape appearance. To address these problems, we propose an improved generative
design approach based on virtual-node based continuous Coordinate Graph Grammar (vcCGG). This
approach defines a new type of grammatical rule named node transformation rules to convert nodes
into shapes with node transformation applications. By combining node transformation applications and
L-applications in vcCGG, we can generate a node-edge graph as the structure of the pattern through
L-applications, and then draw the shape outline, next adjust the positions of these shapes, thus relating
abstract structures and the physical layouts of visual languages. At the end of the paper, we provide an
example application of this approach: generating an illustration from Emma Talbot using a combination
of node transformation applications and L-applications.

Keywords: generative design; graph grammar; shape grammar; node transformation rules; pattern
drawing.

1. Introduction

Design is a complex solution process that involves professional knowledge, innovative
ability, comprehensive experience, aesthetic literacy, and use of scientific technology.
With the rapid development and popularization of new intelligent design automation
technologies such as machine learning, additive manufacturing, artificial intelligence,
and cloud computing, design approaches are constantly expanding. As a developing
design approach, generative design has been extensively studied in academia. Since the
introduction of generative design based on shape grammar, as proposed by G. Stiny
and J. Gips in 1971 [18], generative design has been introduced into different fields such
as architectural design [5], product customization design [9], and visual communication
design [14].

Shape grammar is a generation system oriented toward design. It is a design infer-
ence approach based on rules, using simple shapes as basic elements to establish the
rules for the generation of complex shapes. The foundational rules involve spatial trans-
formations such as translation, scaling, rotation and mirroring, which make one shape
part of another shape. With limited predefined rules, there can be an infinite number of
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designs generated through shape grammar. Following predefined rules, shape grammar
can iteratively replace shapes to generate various patterns. However, shape grammar
can generate only the shapes that consist of simple shapes such as lines, points and
rectangles. Therefore, it is not yet widely used in computer-aided architectural design
(CAAD) applications. Most designers design buildings manually or semi-automatically
on CAD platforms, e.g. Revit and AutoCAD.

Shape grammar focuses on generative design, while graph grammar derived from
one-dimensional character grammar focuses on modeling and analyzing the syntax and
semantics of visual languages. Shape grammar supports only unidirectional workflows.
It takes the initial shape and transformation rules as inputs to generate a preliminary
design and then adjusts the preliminary design by the rules to generate the final design.
In contrast, graph grammars have a bidirectional workflow across derivation and speci-
fication. Similarly, the graph grammar derivation process derives graphs by repeatedly
applying given productions. The graph grammar reduction process, on the other hand,
takes graphs and productions as inputs to parse the graphs by applying productions in a
bottom-up fashion. However, there is a significant gap between the generated node-edge
graphs and the representation of shape appearance for graph grammar.

In our previous work, we proposed an enhanced grammar system for shape gener-
ation [12]. This system defines shape rules to transform edges into shapes by shape
applications, which builds an inherent relation between abstract structures and physical
layouts of visual languages. The main weakness of this system is the position invariance
that reduces the flexibility of design. To address the aforementioned issue, our research
focuses on an analysis of semantic relations among shapes that make up a pattern. We
propose a generative design approach based on vCGG (virtual-node based Coordinate
Graph Grammar) [10]. Our approach defines a new type of grammatical rule named
node transformation rules to convert nodes into shapes with node transformation appli-
cations. By combining node transformation applications and L-applications in vCGG, we
can generate a node-edge graph as the structure of the pattern through L-applications,
and then draw the outlines of shapes with node transformation applications, next ad-
justing the positions of these shapes.

In summary, this paper presents an improved generative design approach that au-
tomatically generates or validates patterns conforming to the specified rules. First, the
structure of the target pattern is generated through vCGG, and then the nodes are
converted into shapes according to the node transformation rules. Finally, the position
of the shape is adjusted based on the edge attributes, and the target pattern is gener-
ated. This approach can set L-applications and node transformation rules in advance for
drawing patterns, and can also formally validate a target pattern to determine whether
it belongs to the pattern generated by the specified rules.

This paper addresses the aforementioned problems and makes the following contri-
butions:
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• An improved approach for grammar specification, grammar induction, generation and
validation of pattern based on the vCGG formalism.

• A complete graph grammar for specifying and analyzing patterns that are composed
of multiple geometric shapes.

• According to the concrete requirements, productions and transformation rules are
designed to achieve customized designs.
The rest of this paper is organized as follows. Section 2 reviews the related works,

including patterns generated by shape grammars, several typical graph grammars and
our approach. Section 3 introduces the approach framework, including vCGG and node
transformation rules. Next, Section 4 gives an example of the Cloud & Bunny rabbit
pattern from Emma Talbot. Section 5 compares our approach and other generative
design approaches. Finally, Section 6 concludes the paper and mentions future work.

2. Related works

In 1971, G. Stiny and J. Gips proposed that shape grammar is a generative system ori-
ented toward design. G.Stiny detailed the concept and entire application process of shape
grammar in 1980 [17]. Design based on shape grammar was first applied in the field of
architectural design. M. Agarwal and J. Cagan [1] proposed the coffee machine shape
grammar as the first application of shape grammar in product design, demonstrating its
use for generating single products before gradually being applied to product design more
broadly. The coffee machine grammar is a parametric grammar consisting of 100 man-
ually created rules and labeled two-dimensional shape grammar implemented through
a Java-based application program. Its objective is to provide designers with selectable
design inspirations during the conceptual exploration phase. However, this method has
limitations because its conceptual nature lacks practical production benefits, resulting
in visual operational difficulties due to numerous labels.

H. H. Chau [3] concluded, through analysis of various electronic and fast-moving
consumer products, that the appearance of these products is largely determined by
straight lines, arcs, and their orthogonal projections. M. Pugliese and J. Cagan [13]
summarized previous research methods and found that grammar has become a design
tool for creating structures and functional requirements. However, there is no specific
method for establishing and maintaining product brand characteristics in the field of
product generation design. The field faces two challenges: engineers and designers need
tools to help understand, express, and maintain product brands, and engineers, designers,
and brand strategists need a common platform to discuss product brands. X. Chen
et al. [4] focused on geometric shape in packaging design, proposing an application of
shape grammar for packaging design research with personal care bottles as an example in
experimentation. S. Wannarumon et al. [20] proposed a method for generating jewelry
designs using shape grammar to support designers in exploring shapes as inspiration
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sources with ring design as practice examples. S. Garcia and L.Romao [7] coded various
types embedded in multifunctional chair classes to develop generative design tools usable
during the chair concept design stage. Y. Yu et al. [21] proposed a method of generating
origami pattern based on shape grammar recursive applications of shape rewriting rules.
In addition, shape grammar provides a perspective and modeling technique for creating
origami tessellation patterns.

Compared to shape grammar in the field of design, graph grammar has the character-
istics of automated generation and specification. Designers can explore different design
options by defining symbols, rules, and parameters, quickly generate a large number of
design schemes, and make adjustments and modifications when necessary to improve
design efficiency and innovation. H. Bunke [2] proposed attributed programmed graph
grammars as a generative tool in image understanding. Based on that, an image un-
derstanding system was built to extract descriptions from input images, where a system
consists of two major subsystems for preprocessing and segmentation, and understand-
ing, respectively. H. Göttler et al. [8] described the data structures in terms of attributed
graphs and their changes in terms of attributed graph productions in an object-oriented
manner, applying Graph Grammar to CAD systems.

In the field of architectural design, X. Wang et al. [19] presented a generic approach
for grammar specification, grammar induction, validation, and design generation of
house floor plans using their path graphs based on the reserved graph grammar for-
malism (RGG). This approach validates floor plans in different styles with user-specified
graph productions and the derivation process is capable of generating floor plan designs.
G. Ślusarczyk [23] proposed a framework for supporting the design process by defining
design requirements over graph-based representations of designs. First, hierarchical lay-
out graph grammars are used to generate hierarchical layout hypergraphs (HL-graphs)
that represent designs; then, local and global graph requirements are defined over HL-
graphs, which correspond to design constraints. The proposed ontological interpretations
transform first-order and monadic second-order logic formulas expressing design criteria
into equivalent local and global graph requirements. The satisfiability of graph require-
ments by representations of designs allows for checking correctness of design solutions. In
subsequent research, G. Ślusarczyk et al. [24] proposed CP-graph grammars to support
building layout design, where the grammar rules are combined with semantic-driven
embedding transformations and the derivations in this type of grammars are defined.
The possibility of relating attributes of right-hand sides to that of the left-hand sides
enables the system to capture parametric modelling knowledge. The proposed gener-
ative method allows the system to automatically model alternative floor layouts with
similar structures but different geometry and parameters, which can be easily adapted
to different use case scenarios and environmental conditions.

Apart from the architectural design, graph grammar has been applied to different
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fields, including mechanical parts description [6], XML validation [16], cluster analy-
sis [22], entity-relationship (E-R) diagram validation [11], and Web pattern recognition
and validation [15]. Overall, graph grammar is a powerful tool for defining and validat-
ing graph models, hence the generative design method in this paper is proposed within
the framework of graph grammar.

Because patterns are composed of various styles of shapes, there is a positional cor-
relation between each shape. The structure of patterns is generated through graph
grammar, which abstracts the positional relationships between various shapes. Then
we convert the node-edge graph generated by graph grammar into shapes through node
transformation rules, enabling graph grammar to generate shapes and draw patterns.
Moreover, graph grammar parsing can check whether a target pattern belongs to the
pattern set defined by the rules.

3. Improved generative design approach framework

VCGG is divided into virtual-node based discrete Coordinate Graph Grammar (vd-
CGG) and virtual-node based continuous Coordinate Graph Grammar (vcCGG) based
on different granularity descriptions of spatial semantics. Due to the strict coordinate
matching mechanism required in this approach, we choose vcCGG as the basic frame-
work. Below is the theoretical framework of the improved approach.

Definition 3.1. A directed graph G on a given label set L is a 2-tuple (N, E).
L consists of a virtual label set Lv and a real label set Lr, where Lr consists of a non-
terminal label set LNT and a terminal label set LT . N is a node set and consists of a
virtual node set NV and a real node set Nr, where Nr consists of a nonterminal node set
NNT and a terminal node set NT . E is a directed edge set.

Mapping for G includes the following:
• fNL : N → L is a mapping that assigns a label l ∈ L to node n ∈ N ;
• fNC : N → R × R is a mapping that assigns a 2D coordinate c ∈ R × R to node

n ∈ N ;
• fENs

: E → N is a mapping that assigns the start node to directed edge e ∈ E;
• fENe

: E → N is a mapping that assigns the end node to directed edge e ∈ E.

Definition 3.2. A production p: GL := GR is made up of a left-hand-side (or left
graph) GL and a right-hand-side (or right graph) GR. For a production, there exists a
bijection fNN : GL.Nv ↔ GR.Nv between Nv ∈ GL and Nv ∈ GR, where GL.Nv is a
virtual node set Nv of GL and GR.Nv is a virtual node set Nv of GR.

A production also satisfies the following conditions:
• ∀n((n ∈ GL.Nv) ⇒ (fNC(n) = f ′

NC(fNN (n)))), where fNC is a mapping that assigns
a coordinate to node n ∈ GL and f ′

NC is a mapping that assigns a coordinate to
n ∈ GR;
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Fig. 1. vcCGG production.
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Fig. 2. The isomorphic graphs in vcCGG.

• ∀n((n ∈ GL.Nv) ⇒ (fNL(n) = f ′
NL(fNN (n)))), where fNL is a mapping that assigns

a label to node n ∈ GL and f ′
NL is a mapping that assigns a label to n ∈ GR;

• ∀n1, n2((n1, n2 ∈ GL.Nv) ∧ (n1 ̸= n2) ⇒ (fNL(n1) ̸= fNL(n2)));
• ∀n1, n2((n1, n2 ∈ GR.Nv) ∧ (n1 ̸= n2) ⇒ (f ′

NL(n1) ̸= f ′
NL(n2))).

VcCGG stipulates that there is a bijection between the virtual node sets at GL and
GR, and the corresponding nodes have the same labels and coordinates. In addition,
to avoid ambiguity during graph embedding, each virtual node in the same graph must
have a unique label, which can be represented by a unique integer.

For example, Fig. 1 is a legal vcCGG production, where the dashed circle represents
the virtual nodes and the solid circle represents the real nodes. There is a bijection
between the left and right graphs of the production, and the corresponding nodes have
the same labels ‘1’, ‘2’ and equal coordinates (0, 0) and (0, 4).

Definition 3.3. Let G and Q be directed graphs. G and Q are isomorphic, denoted
as G ≈ Q, if and only if the following conditions hold:

• There exists a bijection between the nodes of G and Q, namely, fNN : G.N ↔ Q.N ;
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• There exists a bijection between the edges of G and Q, namely, fEE : G.E ↔ Q.E;
• ∀n((n ∈ G.N) ∨ (n ∈ Q.N) ⇒ (fNL(n) ∈ Lv) ∨ (f ′

NL(fNN (n)) ∈ Lv) ∨ (fNL(n) =
f ′

NL(fNN (n)))), where fNL is a mapping that assigns a label to node n ∈ G; f ′
NL is

a mapping that assigns a label to n ∈ Q;
• ∀e((e ∈ G.E) ∨ (e ∈ Q.E) ⇒ (fNN (fENs

(e)) = fENs
(fEE(e))));

• ∀e((e ∈ G.E) ∨ (e ∈ Q.E) ⇒ (fNN (fENe (e)) = fENe(fEE(e)))).

When determining whether a pair of graphs satisfies the isomorphic condition, virtual
nodes have a higher abstract degree than real nodes and can match any labeled node.
Fig. 2 is an example of graph isomorphism in vcCGG, where all nodes and edges satisfy
a bijective relationship. Real node ‘a’ and the corresponding nodes must have the same
label, while virtual nodes ‘1’ and ‘2’ can match any labeled node. In Fig. 2, node ‘1’
matches ‘b’ and node ‘2’ matches node ‘e’.

Definition 3.4. Let G be a directed graph referred to as the host graph and Q be the
subgraph of G. Let GL|R be the left or the right hand-side of a production. Q is called
a redex of G with respect to GL|R, denoted as Q ∈ redex(G, GL|R) if and only if the
following conditions hold:

• Q ≈ GL|R;
• ∀n((n ∈ Q.N ∧ ((f ′

NL(fNN (n)) ∈ Lr)) ⇒
(ds(n) = ds(fNN (n))) ∧ (de(n) = de(fNN (n))));

• ∀n1, n2((n1, n2 ∈ Q.N) ⇒ (fNC(n1) − fNC(n2) = f ′
NC(fNN (n1)) − f ′

NC(fNN (n2)))).

The nodes of a redex could be divided into two types: the nodes matched by the vir-
tual nodes (context nodes) of the production, and the nodes matched by the non-virtual
nodes (inner nodes) of the production. All the edges between the redex and the rest
host graph are only allowed to be connected with the former type of nodes.

Definition 3.5. A L/R application to graph G is a process that generates graph
G′ using production p: GL := GR, denoted as G →p G′(L-application) or G →p G′(R-
application).

The L-application in vcCGG is as follows:
1. Generate an instance of the production as a copy of the production.
2. Translate the coordinates of the instance’s GR by the offset between any matched

nodes in the redex Q and GL.
3. Delete edges in the redex Q and nodes that match the real nodes in GL from the host

graph.
4. According to the mapping between the virtual node of GL and the redex Q, glue the

virtual node of GR to the corresponding node in the redex Q and remove the virtual
label from the host graph.
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e1
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e2

e1

e2

 Q

Host graph G

Fig. 3. New host graphs generated by a production.

Fig. 3 depicts an L-application process that generates new host graph G′ using pro-
duction p: GL := GR.
1. Generate an instance of production p.
2. Find a redex of G with respect to GL: In the host graph G, we denote a graph in the

dashed box as graph Q. Q ≈ GL and the coordinate differences of the corresponding
nodes are (2, 2), so Q ∈ redex(G, GL|R).

3. Subtract all node coordinates of GR (2, 2).
4. Delete edge ‘e1’, ‘e2’ and node ‘c’ from G.
5. Glue virtual node ‘1’ of GR to real node ‘a’ of G and virtual node ‘2’ of GR to real

node ‘d’ of G; and remove the virtual label from the host graph.
Definition 3.6. A node transformation rule is a 4-tuple(cset, cpoint, ops, parm),

where
• cset is a set of coordinates as the points to represent a shape;
• cpoint is the mean point of cset;
• ops is the operations performed on the cset, such as translation, rotation, scaling,

etc.;
• parm is the parameter of the ops, such as the offset of translation or the angle of

rotation.
Given a node transformation rule, the node transformation application is a process

that draws the outline of a shape from the perspective of the user using node transfor-
mation rules. Below are the steps for a node transformation application:
1. Draw a shape based on the outline described by a node’s cset, and make the cpoint

coincide with the node. As shown in Fig. 4, a node transformation rule is to transform
a node into a rectangle. Use this node transformation rule for node A and B: make the
cpoint of this rectangle coincide with node A and B, and transform edge e1 connecting
A and B to line segment l1;
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:=
cpoint

A B

(0, 0) (5, 0)

(0, 0) (5, 0)

A node transformation rule

（a）

(b)

(c)

 

 

edge

line segment

Fig. 4. Demonstration figure of step 1.

2. As shown in Fig. 5, deform the shape by the following methods according to ops and
parm:

(a) Translation: Let A be a shape, and the position of A can change along the X and
Y axes, i.e.,
∀(x, y) ∈ A, (x′, y′) = (x + a, y + b),
where a is the distance that the position of A changes on the X axes and b is the
distance that the position of A changes on the Y axes.

(b) Scale: Let A be a shape that can expand or shrink in a certain proportion, i.e.,

∀(x, y) ∈ A,
[

x′

y′

]
=

[
S 0
0 S

] [
x
y

]
, where S is the factor by which shape A

expands or shrinks.
(c) Stretch: Let A be a shape that can be elongated or shortened along the X and Y

axes. Specifically, if the factors of elongation or shortening along the X and Y axes
are equal, A can be considered to be scaled, i.e.,

∀ (x, y) ∈ A,
[

x′

y′

]
=

[
Sx 0
0 Sy

] [
x
y

]
,

where Sx is the factor by which A is elongated or shortened along the X axes and
Sy is the factor by which A is elongated or shortened along the Y axes.

(d) Rotate:Let A be a shape that can rotate θ (0 < θ < 2π) counterclockwise around
the cpoint MA(XA, YA), i.e.,
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a) translation b) scale c) stretch

d) rotate e) reflect

Fig. 5. A new shape formed by 5 operations.

∀ (x, y) ∈ A, (x′, y′) = ((XA − x) cosθ − (YA − y) sin θ +XA, (XA −x) sin θ +(YA −
y) cos θ + YA).

(e) Reflect: Let A be a shape. ∀l : PX + QY + M = 0(P 2 + Q2 > 0), new shape A′ is
a mirror image of A across line l, i.e.,
∀ (x, y) ∈ A, (x′, y′) =

(
x − 2P (P x+Qy+M)

P 2+Q2 , y − 2Q(P x+Qy+M)
P 2+Q2

)
.

3. Render the shape from the user’s perspective based on the outline described by the
cset through its own operations.

4. Adjust the position of the shape based on the attributes of the line segment l1.
Definition 3.7. For shape A and shape B, A and B are separated if and only if

∃l : Px + Qy + M = 0(P 2 + Q2 > 0), A and B are on both sides of line l, as shown in
Fig. 6.

As shown in Fig. 7, for shape A and B, MA is the cpoint of A and MB is the cpoint of
B. MA and MB are connected through a directed line segment lAB , where MA is the start
point of lAB and MB is the end point of lAB . The position of MA will change according
to the attribute of lAB , and the position of A will be changed following the changes in
MA position. The attribute of lAB is ‘far from d’ or ‘near d’, where d is the distance
at which the MA position changes. When using node transformation rules to transform
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separated not separated

Fig. 6. The two shapes are separated or not.

near

B A

touch

near concentric

Fig. 7. A is near B; A touches B; A is concentric to B.

node A and B into shape A and B, it is necessary to ensure that they are separated.
Therefore, if the attribute of lAB is ‘far from d’, regardless of the value of d, A and B are
still separated. So, we won’t limit the value of d when the attribute of lAB is ‘far from d’.

Definition 3.8. If the attribute of lAB is ‘near d’, A may touch B or be concentric
with B during the process of changing the position of A.

• Touch: A.cset ∧ B.cset ̸= ∅ for the first time;
• Concentric: MA coincides with MB.

For convenience, when users want A to touch B or be concentric with B, they can
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touch

touch

touch

touch

A

B

C

C

A

B

touch

A
B

C

B

C

A

touch

C

AB

C

A
B

（a）

(b)

Fig. 8. The final position of A will change due to the order of touch B or C.

set the lAB attribute to ‘touch’ or ‘concentric’. Before the position of MA changes, make
Dmax = |MA − MB |. So, 0 < d ≤ Dmax when the attribute of lAB is ‘near d’.

As shown in Fig. 8, for shape A, when MA is the starting point of two or more
directed line segments, the position of A must to be changed at least twice, and different
changing sequences can lead to different positions. As shown in the Fig. 8, A needs to
touch both B and C, and the final position of A will change based on the order of it
touches B or C. Therefore:

• When the X coordinate of the end nodes is different, the position of start node first
changes toward the end node with a smaller X coordinate;

• When the X coordinate of the end nodes is the same, the position of start node first
changes toward the end node with a smaller Y coordinate.

4. An example on rabbit pattern

This section gives an example to illustrating an application of the improved approach,
where a set of designed productions and node transformation rules are used to generate
a section of the Cloud & Bunny rabbit pattern from Emma Talbot. Emma is passionate
about mixed media research and enjoys using various media to create textures, patterns,
and collages to integrate into her artistic creations. The Cloud & Bunny rabbit pattern
is composed of simple geometric shapes such as arcs, rectangles, triangles, etc., forming
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Fig. 9. Productions for a bunny rabbit.

patterns of rabbits, flowers, and clouds. In this paper, a rabbit pattern is selected as the
generated pattern. Fig. 9 shows a set of vcCGG productions and eight node transfor-
mation rules as a grammar set for the rabbit pattern, where the vcCGG productions are
used for the abstract models of pattern and node transformation rules describe physical
layouts. For the vcCGG productions, the initial symbol ‘λ’ denotes the beginning of
graph grammar. ‘λ’ is used to generate the right graph of p1 through production p1 and
then generate the target structure of the pattern based on the remaining productions
p2-p6. For the productions in Fig. 9, virtual nodes, which are represented by a dashed
circle and labeled ‘1’, ‘2’, and ‘3’, are used to match coordinates; real nodes, which are
represented by a solid circle and labelled ‘ 1⃝’, ‘ 2⃝’, and ‘ 3⃝’, are converted into shapes.
For the node transformation rules in Fig. 9, we set eight shapes to generate the final
pattern, including circle, rectangle, triangle, etc.

Fig. 10 shows a process of generating a rabbit pattern using the productions and
node transformation rules above. When using an L-application to generate the structure
of the target pattern, an attribute is assigned to each generated edge. The attribute
can be ‘near’, ‘touch’ or ‘concentric’. If the attribute is ‘near’, the distance needs to be
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Fig. 10. Generation of a bunny rabbit.

given as parameter. When using node transformation rules for the final generated node-
edge graph, each node is traversed and converted into a shape based on the associated
label. Then, each edge is traversed, the position of each shape is adjusted based on the
attribute of each edge, and the target pattern is ultimately obtained.

5. Comparisons with other generative design approaches

In this section, we compare our approach proposed in this paper with shape grammar,
edge transformation grammar [12] and CP-graph grammar [24]. Shape grammar is
a design inference approach based on rules, using simple shapes as basic elements to
establish the rules for the generation of complex shapes. Edge transformation grammar
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defines shape rules to transform edges into shapes by shape applications. The CP-
graph grammar is used to automatically generate CP-graphs corresponding to new layout
designs with non-geometrical properties (like sizes, areas) specified by graph attributes.

As Table 1 shows, these approaches can all design shapes through derivation. How-
ever, when drawing patterns using shape grammar, different shapes of a pattern are
related only in terms of position and have no semantic relations. Therefore, it is difficult
to formally analyze the generated pattern. Our approach based on vcCGG can formally
validate a target pattern to determine whether it belongs to the pattern generated by
the specified rules by combining node transformation applications and L-applications.
Moreover, after designing the transformation rules for shape grammar, edge transforma-
tion grammar and CP-graph grammar, they are unable to adjust the size and position of
the shape, resulting in a lack of position and size variability. However, for our approach,
after generating the structure of the target pattern through vCGG, the nodes which are
converted into shapes according to the node transformation rules can adjust the size and
position of themselves. Therefore, in terms of position and size variability, our approach
is superior to shape grammar and edge transformation grammar.

Tab. 1. Comparison between approach in this paper, shape grammar, edge transformation grammar
and CP-graph grammar.

Approach Derivation Parsing Positional and size variability
Our approach ✓ ✓ ✓
Shape grammar ✓ × ×
Edge transformation system ✓ ✓ ×
CP-graph grammar ✓ ✓ ×

6. Conclusions

When designers use shape grammar to generate patterns, there are no semantic relations
among the various shapes that make up the pattern or the small patterns that make up
the large patterns. Therefore, it is difficult to formally analyze the generated patterns. In
addition, graph grammar is primarily used for generating and analyzing abstract models
of visual languages. There is a significant gap between the generated node-edge graphs
and the visual representation of shapes, so few researchers have applied these concepts
in the design field.

This paper proposes an improved generative design approach for pattern drawing,
which introduces node transformation rules in the framework of vcCGG. First, the struc-
ture of the target pattern is generated through vcCGG, and then the nodes are converted
into shapes according to the node transformation rules. Finally, the position of each
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shape is adjusted based on the edge attributes, and the target pattern is generated. In
this approach, L-applications and node transformation rules are set in advance for draw-
ing patterns, and a target pattern can be formally analyzed to determine whether it is
a pattern generated based on the specified rules.

In the future, we plan to improve the theoretical framework of the improved approach
and consider adding gray values to the node transformation rules. If it goes well, we
plan to add RGB to it so that the improved approach can be used to design the colored
patterns. Moreover, we plan to develop a support system for this approach with a friendly
GUI for end users to design graph productions and node transformation rules. The
system platform will provide support for grammatical operations and the implementation
of related applications.
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Abstract Age prediction has become an important Computer Vision task. Although this task requires
the age of an individual to be predicted from a given face, research has shown that it is more intuitive and
easier for humans to decide which of two individuals is older than to decide how old an individual is. This
work follows this intuition to aid the age prediction of a face by exploiting the age information available
from other faces. It goes further to explore the statistical relationships between facial features within age
groups to compute age-group ranks for a given face. The resulting age-group rank is low-dimensional and
age-discriminatory, thus improving age prediction accuracy when fed into an age predictor. Experiments
on publicly available facial ageing datasets (FGnet, PAL, and Adience) reveal the effectiveness of the
proposed age-group ranking model when used with traditional Machine learning algorithms as well
as Deep Learning algorithms. Cross-dataset validation, a method of training and testing on entirely
different datasets, was also employed to further investigate the effectiveness of this method.

Keywords: age estimation, age-group ranking, cross-dataset validation, dimensionality reduction, face
processing, facial features.

1. Introduction

Ageing is a spontaneous and irreversible process of human life. This spontaneous and
irreversible nature makes the ageing process non-linear and therefore difficult to predict.
Thus, judging human age via facial appearance or other physical evaluations is difficult.
Humans develop an innate ability, early in life to predict age to a reasonable degree of
accuracy [18,20], but this task still seems difficult for computers. The task of predicting
or determining the age of an individual, given his/her facial image, is referred to in the
Computer Vision and Image Processing research community as age estimation or age
prediction. Automated age estimation has proven to have many interesting applications
in security and surveillance, age-specific human-computer interaction, preventing age
falsification, age-specific advertising etc. [2, 18].

Despite the success of deep learning for facial age estimation, the bulk of features are
mostly learned directly from individual images without considering feature correlations
across other images, especially with respect to the ages of those other images. This limits
the relevance of learned features to the required discriminatory factor of ageing.

In this work, an age-group ranking approach is proposed, which exploits the relation-
ships between faces across several age groups to enrich the extracted facial features for
age estimation. The intuition behind this method is the observation that humans esti-
mate ages by instinctively making comparisons between a given face with an unknown
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age and other faces whose ages are known. This process is usually implicit and very fast
with humans and it happens almost unconsciously. However, this process is influenced
by the amount of exposure or experience of the person trying to estimate the age of an-
other person. It could also involve scanning through faces in certain known age groups
and trying to fix the questioned face in one of those age groups. Although it is difficult
to completely model this process in a machine, we take intuition from this to develop
an age group ranking model through which a questioned face is passed, compared with
several age groups, and ranked accordingly. The resulting age-group rank is then used
to embellish facial features to enhance the age-learning and prediction processes. The
idea is to develop a model for extracting facial features that are age-discriminatory yet
low-dimensional such that they can be used to predict ages from input face images. Ex-
periments were performed on three publicly available facial ageing datasets FGnet [12],
PAL [32] and Adience [17,22] and a new dataset, FAGE, and the results obtained com-
pete significantly with the state-of-the-art facial age estimation methods.

The specific contributions of this work include:
1. An age-group ranking model that produces age-discriminatory yet low-dimensional

facial features from learned correlations between faces and age groups.
2. Deviation of Feature Values (DoFV) which allows age group ranks to be computed

without requiring training or prior knowledge of the age of an input image.
3. An indigenous dataset (FAGE) of age-labelled facial images.
4. Cross-dataset validation to demonstrate the generalisation of the age-group ranking

model.
The rest of the paper is organized as follows: Section 2 discusses related previous

works in the field of facial age estimation, Section 4 discusses the methodology, Section 5
presents the experiments, results and discussion and Section 6 concludes the paper.

2. Related previous works

2.1. Using direct facial features for age estimation

One of the earliest works on facial age estimation was the work of Kwon and Lobo [24]
which used face anthropometry and face wrinkles to describe the face and reported 100%
accuracy on a set of 47 high-resolution face images classified as ‘Babies’, ‘Young Adults’
or ‘Seniors’. Research has since continued to produce several methods for improving facial
age estimation using different face descriptors, different age representation methods, and
various machine learning algorithms.

In [25], the Active Appearance Model (AAM) was used to represent the face and
Principal Component Analysis (PCA) was used to obtain the deviation of each face
from the mean AAM face model. In [19], an ageing pattern subspace learning model was
proposed for facial age estimation. The authors defined an ageing pattern as a sequence
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of personal face images sorted by time. Guo et al. [21] used Biologically Inspired Fea-
tures (BIF) together with manifold learning techniques to estimate ages using Support
Vector Machine (SVM) for age classification and Support Vector Regression (SVR) for
age regression. Most of these methods, except for [19], directly used facial features of
individuals for age classification or regression without considering possible relationships
between faces with respect to age.

2.2. Using age ranking for age estimation

Some works have employed age ranking in various ways. In [8], the authors proposed
a ranking approach to age estimation based on the intuition that humans estimate the
age of an unknown individual by comparing his/her face to the faces of other individuals
whose ages are known, thus resulting in a series of pairwise comparisons across a set
of individuals with known ages. Based on this intuition, they proposed an age ranking
model which results in binary classification-based comparisons. They used an ordinal
ranking algorithm to reduce the ordinal ranking problem to a binary classification prob-
lem. [9] also proposed an age estimation algorithm that employed the relative order of
ages as well as the classification costs. They maintained ordinal hyperplanes which sep-
arated all images into two groups based on the relative order of their age labels and
used the cost of classification to find the best-separating hyperplane. In [3], an ethnic-
specific age group ranking method was proposed for age estimation. In [7], age ranks
were predicted based on a cost-sensitive hyperplane ranking algorithm, facial features
were represented in low-dimensional space by a scattering transform so that exact ages
are then predicted via category-wise age ranks. In [49], a deep learning model was used
to rank faces and to estimate ages from faces. Ranking-CNN was proposed in [10] as a
series of basic CNNs with binary outputs which were aggregated to obtain a final age
label. Their experiments were conducted by pretraining their basic CNNs on Adience
dataset [17] and then fine-tuning and validating it on the MORPH dataset with the best
MAE of 2.96 years. While that work employed the ordinal age ranking between face
pairs, ours employs ordinal relationships between each face and groups of faces in each
age group.

2.3. Using deep learning for age estimation

More recently, deep learning models such as Convolutional Neural Networks (CNN) have
been used to determine age from faces. [49] used a Scattering Network (a CNN variant) to
develop a deep ranking model from age estimation. [35] used CNN with mean-variance
and softmax losses to estimate ages from faces. [15] used CNN in a transfer learning
setting to predict apparent as well as biological ages. [48] used CNN to learn the ordinal
nature of ages for age estimation. In [47], a group-n age encoding was proposed, a
CNN with multiple classifiers was used to learn the several age groups and a Local Age
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Decoder was used to predict the exact ages. As accurate as deep learning models can be,
they are computationally demanding and often require large amounts of training data.

3. Problem and motivation

Despite the impressive performance of many of these deep learning models, we observed
that most of them failed to model the correlation of facial features with age groups as
well as the inter-age groups’ relationships. This is difficult for many of these models
because deep learning architectures learn their features directly from inputs. Those
which attempted to capture this relationship to an extent (e.g. [10,47,48]) still failed to
capture the inter-age group relationships as it concerns facial features.

Also, most age ranking works conducted pairwise comparisons between faces leading
to a large set of pairwise comparisons. Although DeepRank [49] does not rely on pairwise
ranks, it infers its ranks from single images which still limits the possibility of capturing
the correlation of faces within a larger set such as an age group. Secondly, most age-
ranking works employed some form of learning to perform the age-ranking on faces. We
also observed that in many cases, a reference image set was maintained for age ranking
which is a subset of the training set and thus limits the amount of information available
for age ranking. In [10], the age ranks were learned by several basic deep-learning
networks, the results of which were aggregated to obtain a final age estimate. Considering
the computational demand of deep networks, this could even be very expensive.

In this work, we propose an age-group ranking model which ranks face images by
comparing an input image with every image in an entire training set and, in an attempt
to represent age-group-specific features, derives an age group rank that is representative
of each age group. Thus, each input image is ranked with respect to every image in
a training set as well as with every age group in the training set. This provides a
representation of the correlation of input images with every image in the training set as
well as with every age group represented in the training set. Also, instead of learning and
predicting age group ranks, we derived the deviation of feature values (DoFV) between
compared faces and performed basic statistical computations on these values with respect
to age groups, thus reducing the computational overhead that could have been incurred
due to learning age ranks prior to learning exact ages.

4. Methodology

When a human is asked to estimate the age of a given facial image, several operations
come into play in the mind. Apart from the fact that humans possess an innate ability
to recognize age from the face, people generally tend to estimate age by comparing the
given face to some other faces whose ages are known. This comparison is part of the
innate ability and it is usually very fast and without prior thought or preparation. Thus,

Machine GRAPHICS & VISION 33(1):21–45, 2024. DOI: 10.22630/MGV.2024.33.1.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.2


J. D. Akinyemi, O. F. W. Onifade 25

a person’s ability to correctly estimate age can be considerably impacted by his/her own
age vis-a-vis his/her life experience [20,38]. The more exposed and experienced a person
is, the better is his/her age prediction ability. Thus, the age prediction ability of an
adult is expected to be better than that of a child because of experience and the extent
of development. In developing the proposed age-group ranking model, we leveraged this
intuition.

Since a person’s age estimation ability is impacted by his/her age and life experience,
then the age ranking model can be enriched with more experience by providing more
reference images for age ranking. Thus, our proposed age group ranking model employs
its entire training image set in a leave-one-out fashion to rank images by their age
groups. By using the leave-one-out method it is assured that no face image is ranked
by comparison with itself. This is justifiable by the fact that the face whose age is in
question should be compared with faces whose ages are known and not with itself, since
its age is still unknown. Also, people within an age group tend to exhibit similar ageing
features, thus making it easier to rank images by age groups than by exact ages. In fact,
the sparse nature of ages in most facial ageing datasets makes it almost impossible to
obtain enough images for each exact age rank. Also, unlike most other works, our age
group ranking model does not learn age group ranks; rather, it obtains the deviation
of feature values (DoFV) from compared faces and obtains the means and standard
deviations of these deviation values within age groups which are then used to compute
age group ranks for an input image.

However, there is still the challenge that, since the age of the face image in question
is not known, it is difficult to decide which age group the image should be compared with
in order to obtain an age group rank. To overcome this, the age group ranking model
performs an exhaustive comparison of the questioned face with every face in every age
group (in a dataset) so that the face is enriched with a representation of its correlation
across various age groups. Consequently, the correlation of an input face with its actual
age group is also learned from its comparison with several face images in that age group.

4.1. The age learning problem formulation

In this work, age estimation is modelled primarily as a regression problem. Thus, suppose
we have a set A of face images and a set B of age labels ordered by the magnitude of
the age values, the sets A and B can be represented as follows:

A = {ai|i = 1, . . . , p} , (1)
B = {bj |j = 0, · · · , q ∧ ∀j, bj+1 > bj} , (2)

where ai is face image, bj is an age value, p is the number of face images and q is the
highest age value. The expression ∀j, bj+1 > bj indicates that B is an ordered set, i.e.,
every age value is greater than the previous age value in the set, since age values are
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Fig. 1. The age-group ranking model.

ordered in time sequence. This ordering is necessary for age group ranking as we will
see in subsection 4.2. Thus, the task of age estimation involves approximating an age
learning function, say f1, which appropriately maps each facial image in A to its age
value in B, according to

f1(ai) = bj , (3)

where ai ∈ A and bj ∈ B.

4.2. The age-group ranking model

While age learning explores the relationship between face images and ages, age group
ranking explores the relationships between each face image and other images in various
age groups. Fig. 1 is a graphical illustration of how the AGR model ranks an input face
by an age-group-ordered training set to derive different age group rank-types.

Following the definitions of the sets A and B above, we define a third set C of age
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groups, according to

C = {cλ|λ = 1, · · · , w ∧ ∀λ, cλ+1 > cλ} , (4)

where cλ is an age group label and w is the number of age group labels.
Precisely, each cλ ∈ C is a subset of B. Thus each element of the set C of age groups

is itself a set (of age values) contained in the set B and the sets cλ are disjoint.
Further, the number of age groups in C is definitely less than the number of ages in

B, that is 1 < w < q.
The elements of each cλ is determined from B by a range parameter, τ . Thus, we

write cτ
λ ⊂ B.

Due to the nature of ageing and the challenge of insufficient data collection for its
studies, the range parameter τ could be the same throughout the set C or may change
for every cλ ∈ C. This is necessary to ensure that the number of faces available to
be mapped to each age group is relatively sizeable. However, as observed in (4), the
ordering of B is retained in C as well. In our experiments, the value of τ was empirically
determined based on the size of the dataset and the age distribution. This is necessary
to ensure that the number of face images and their ages in each age group are sufficient
for ranking a face, otherwise, we risk underrepresenting an age group.

Having defined the age learning function f1 in (3), we further define an age group
matching function h which maps faces to age groups, given the age of the face as follows:

h(ai, bj) = cτ
λ , (5)

so that
∀ai∃bj , such that f(ai) = bj , (6)

and
∀ai∃bj , cλ , such that h(ai, bj) = cτ

λ
. (7)

While the age learning function has to be approximated (by training), the age group
matching function simply associates a face (given its age) to its appropriate age group,
thus it requires no approximation or training. However, the age group matching function
only applies to training images or images whose ages are known and these are the images
that make up the reference image set for comparison during age group ranking. As earlier
stated, images to which an input image will be compared during age group ranking should
be images whose ages or age groups are known, we, therefore, used all training images as
the reference image set. The next challenge, however, is how to determine the age group
to which an input (test) image belongs and this is where an age group ranking function
steps in. It is noteworthy to state, therefore, that while the age group matching function
simply assigns a face to an age group given the exact age of the face, the age group
ranking function is responsible for capturing and representing the correlation of each
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face with each age group. So, the age group matching function requires prior knowledge
of the age of a given face so that it can construct the training set as a reference image
set organized into age groups, but the age group ranking function requires no prior
knowledge of the age of an input face.

Rather than approximating the age group ranking function by training, the function
is realized by computing some arithmetic and statistical measures to represent the cor-
relation of each face with each age group. Since the age group of the input (test) image
is supposedly unknown, by collecting such measures for all age groups, we are able to
capture the correlation of a face with various age groups. This further embellishes each
face with relevant information for learning the discriminatory properties of faces in terms
of their ages and age groups and reduces the overhead that could have been incurred by
learning the age group ranks. The result of this operation is a multivariate age group
rank for each face image representing its correlation with every age group.

Given the set A of face images and the set C of age groups as earlier defined, we
define a tuple A⃗ of sets of faces ordered by age groups as follows:

A⃗ =
(

Â1, Â2, . . . , Âw

)
, (8)

and
Âλ = {aλ1 , aλ2 , ..., aλg } . (9)

Each Âλ, (1 ≤ λ ≤ w), is a set of face images matched to the age group cλ, w is the
number of age groups as indicated in equation (5), each aλj

, (1 ≤ j ≤ g) is a face image
in the set Âλ and g is the number of face images in a particular age group. Since Âλ is a
set, it means the face images in it are not necessarily ordered by age, but are definitely
matched to the age group cλ.

Given a face image ai and a tuple A⃗ of faces ordered by their age groups, the age
group ranking function f2, which assigns an age group rank to image ai to obtain an
age-group-ranked face âi, is defined as follows:

f2(ai, A⃗) = âi . (10)

At this point, each face image ai has been transformed into a vector Xi of facial
features; therefore, the age group rank r̂i of each face ai is a vector obtained by computing
the Deviation of Feature Values (DoFV) between each face and every face in the tuple
A⃗ of age grouped faces. The several operations abstracted in f2() are detailed in the
following formulations.

Given a face ai, with unknown age and age group, the age group rank r̂i of ai is
obtained as follows:

ς(ai, aλj ) = ∆iλj , (11)
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Fig. 2. DoFV computation.

where ς is the DoFV function, aλj
is the jth face in the set Âλ of age-grouped faces and

∆iλj
is the obtained DoFV. DoFV is obtained by taking the absolute difference in feature

values between an input image ai whose age is unknown and an age grouped image aλj

whose age/age group is known. Then, for each age group, arithmetic and statistical
measures of the differences in feature values are obtained for this particular input image
and this provides the age group rank for the image at this particular age group. For
each input image, this is repeated for all age groups and a vector of ranks is obtained for
that input image, by concatenating the arithmetic and statistical measures of the DoFV
obtained from all age groups. Therefore, the age group rank contains information about
the statistical properties of images at feature, image, and age-group levels. Consequently,
the age group rank obtained for each input image corresponds to the correlation of the
feature values of the input image with the feature values of the various images in that
age group. Hence, the obtained age group rank is actually a measure of the correlation of
an input image with images of all age groups. With this information, the age learner (at
training) can learn the correlation of each face with every age group, thus being able to
better fit faces to their respective ages. Fig. 2 shows the DoFV computation procedure
as explained above.

Suppose the facial features of a face image ai is collected into the vector Xi of size n
and each feature value in the vector Xi is indexed by t, (1 ≤ t ≤ n), then the following
formulations can be stated for DoFV for a given face ai as follows:

∆t = |Xit − Xλjt
| , (12)

∆t being the DoFV for the tth feature in the facial feature vector Xi, obtained as the
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absolute difference between the tth feature vector in the input face and the tth feature
vector in the jth face of the age group Âλ.

Then, for each face feature vector Xi (1 ≤ i ≤ p; p being the number of face images),
two arithmetic and statistical measures of the DoFV are taken, namely the arithmetic
mean and the standard deviation denoted as ∆µ

iλj
and ∆σ

iλj
, respectively.

Subsequently, for each age group, four arithmetic and statistical measures are ob-
tained as mean of means (∆µµ

iλ ), mean of standard deviations (∆µσ
iλ ), standard deviation

of means (∆σµ
iλ ) and standard deviation of standard deviations (∆σσ

iλ ), as shown in equa-
tions (13) to (16), respectively.

∆µµ
iλ =

g∑
j=1

∆µ
iλj

g
(13)

∆µσ
iλ =

g∑
j=1

∆σ
iλj

g
(14)

∆σµ
iλ =

√√√√√ g∑
j=1

(∆µ
iλj

− ∆µ+
iλ )2

g − 1 (15)

∆σσ
iλ =

√√√√√ g∑
j=1

(∆σ
iλj

− ∆µ+
iλ )2

g − 1 (16)

For every face image ai, these four values are obtained for each age group resulting
in 4×w values (w being the number of age groups), since the age/age group of the query
face is supposedly unknown.

The age group rank r̂i is obtained by performing arithmetic multiplication and di-
vision operations between these four values in eight different ways. These eight values
are computed for each age group, giving a maximum of 8 × w (w being the number of
age groups) values making up the age group rank of each image. The selected eight
values, called rank-types, are computed as ϖiλ1 = ∆µµ

iλ × ∆σµ
iλ ; ϖiλ2 = ∆µσ

iλ × ∆σσ
iλ ;

ϖiλ3 = ∆µµ
iλ /∆σµ

iλ ; ϖiλ4 = ∆µσ
iλ /∆σσ

iλ ; ϖiλ5 = ∆µµ
iλ × ∆µσ

iλ ; ϖiλ6 = ∆σµ
iλ × ∆σσ

iλ ; ϖiλ7

= ∆µµ
iλ /∆µσ

iλ and ϖiλ8 = ∆σµ
iλ /∆σσ

iλ , where ϖiλ1 , ϖiλ2 , ..., ϖiλ8 are the eight rank-types.
For space constraints, we leave out the equations for these ranks as they can be easily
deduced from equations (13)-(16).

Consequently, the rank r̂i (1 ≤ i ≤ p; p being the number of face images) of each
image is made up by concatenating the obtained rank values of all the age groups for
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each rank type, as follows:

r̃ik = ϖi1k
⊕ ϖi2k

⊕ . . . ϖiwk
, (17)

where ϖi1k
, ϖi2k

, ..., ϖiwk
are the values for rank-type k (1 ≤ k ≤ 8) for each of the w

age groups and r̃ik is the resulting vector for rank-type k for all age groups. Finally, the
rank r̂i of an image ai for all rank types is given as

r̂i = r̃i1 ⊕ r̃i2 ⊕ ... ⊕ r̃it , (18)

where t is the number of different rank-types and in this case, t = 8. Eventually, the age
group rank obtained for a face image ai is concatenated with the facial features of ai to
obtain an age-group-ranked face image âi as stated in equation (17). Thus, we can write

X̂i = Xi ⊕ r̂i , (19)

where X̂i is the age-group-ranked feature vector of the age-group-ranked face âi. Equa-
tion (3) can therefore be rewritten as in equation (20) so that a learning algorithm can
then approximate this function:

f1(X̂i) = bj . (20)

The effect of this is that the learning algorithm has more age-relevant facial features
to learn from in approximating this function and thereby estimating the exact age of a
given face. Details of the learning algorithms are given in the next section.

Summarily, the entire process described produces enhanced features (low-dimensional
and discriminatory) that can be supplied as input to a learning algorithm to predict the
exact age of a given face. Links to the dataset and source code will be made available
after acceptance.

5. Experiments, Results, and Discussions

5.1. Experimental Settings

Our age group ranking (AGR) model was implemented in MATLAB R2016a. We
used Local Binary Patterns (LBP) [34], raw image pixel features and deep features
(VGG16 [45], Inception-V3 [46], Xception [11] and VGGFace [36]) as face descriptors
and used Support Vector Regression (SVR) with Radial Basis Function (RBF) kernel (to
capture the non-linearity of face ageing) for age learning. Experiments were performed
on four different facial ageing datasets, namely FGnet [12], which contains 1002 images
of 82 individuals, PAL [32], with 1046 images of 575 individuals and a new dataset,
FAGE (Facial expression, Age, Gender and Ethnicity) with 540 images of 328 individ-
uals, and Adience [17]. For Adience dataset, the age labels are not exact ages but age
groups, therefore in place of SVR, we used the Discriminant Analysis classifier with a
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quadratic kernel, henceforth referred to as Quadratic Discriminant Analysis (QDA), for
age group learning. For SVR, the age learning optimization algorithm used was Sequen-
tial Minimal Optimization. The estimated Lagrange multipliers for the support vectors
as well as the optimization coefficients were initialized to zero and training was done for
1000 iterations. For QDA, the misclassification cost was a square matrix whose values
were derived from the distance between the age classes and the prior probabilities were
empirically determined from the frequencies of the age classes.

Although our model was originally formulated for regression, in the case of Adience
dataset, the model is adapted to classification by using the supplied age groups both for
age group ranking and as the responses to be learned in age classification, so Adience
does not require the age group matching function of equation (5). As will be seen in
Tab. 1, the age groups in Adience are already too wide and too few (only eight of them),
so merging two or three age groups into one will only increase the age gap and reduce
the number of age groups available for age group ranking. As will be seen in the results,
this limitation affected the result of age group ranking on Adience dataset.

Our choice of these datasets is because they are publicly available and have long-
standing usage in age estimation research. FAGE was collected for this research, specifi-
cally to investigate age estimation on indigenous African faces (a problem rarely studied).
To investigate the generalization ability of the trained models, we also performed cross-
dataset validation (which is rarely done because of the peculiarities of each dataset)
between three of the four datasets studied (Adience was excluded as it does not include
exact ages).

For training and validation on FGnet, we adopted the popular subject-exclusive
Leave-One-Person-Out (LOPO) cross-validation protocol as described in [19]. For PAL
and FAGE datasets, we used 5-fold cross-validation and for Adience, we used the subject-
exclusive 5-fold cross-validation as suggested in [17]. The evaluation metrics that have
become standards for age estimation are Mean Absolute Error (MAE) and Cumulative
Score (CS). MAE is the average of the absolute difference between the actual and pre-
dicted ages while CS is the percentage of the dataset whose ages are correctly predicted
at a given error level. However, for Adience, the recommended and popular evaluation
metric is the percentage classification accuracy (ACC) and is usually divided into exact
accuracy and 1-off accuracy (taking as correct, predictions off by one age group). Thus,
with MAE, the lower the value, the better the performance, while with ACC and CS,
the higher the value, the better the performance.

Each dataset was split into age groups such that each age group spanned about five
years (i. e. τ ≈ 5) except in cases where there were not enough images to represent an
age group. For Adience, we simply used the age group classes that came with the dataset
as the age groups for ranking. Tab. 1 shows the division of the age groups within each
of the four datasets. Age group ranking was thus performed on each dataset using these
age group divisions, thus resulting in 11, 12, 10, and 8 age group ranks for FGnet, PAL,
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Tab. 1. Datasets divisions by age group.

Adience Dataset FAGE Dataset FGnet Dataset PAL Dataset
Age group # faces Age group # faces Age group # faces Age group # faces

0 – 2 2509 0 – 5 44 0 – 4 194 18 – 20 116
4 – 6 2140 6 – 10 97 5 – 8 153 21 – 25 274
8 – 13 2292 11 – 15 66 9 – 12 135 26 – 30 86
15 – 23 1887 16 – y20 71 13 – 16 130 31 – 35 44
25 – 36 5549 21 – 25 142 17 – 20 118 36 – 40 34
38 – 46 2429 26 – 30 63 21 – 24 64 41 – 45 38
48 – 58 937 31 – 35 27 25 – 28 51 46 – 50 34
60 – 100 872 36 – 40 10 29 – 32 38 51 – 55 40

– – 41 – 45 13 33 – 36 36 56 – 60 12
– – 46 – 80 7 37 – 40 23 61 – 70 162
– – – – 41 – 69 60 71 – 80 139
– – – – – – 81 – 93 67

Total 18615 Total 540 Total 1002 Total 1046

FAGE, and Adience datasets, respectively. For brevity, AGR refers to age group ranking
in all tables and figures where it appears.

A note on Adience dataset
According to [17], the Adience dataset is said to contain 26 580 images of 2 284 subjects.
However, the dataset downloadable from the authors’ website contains exactly 19 370
images (see Table I of [37]) out of which only 18 615 images are labelled with age groups.
This is further confirmed by our observation of the fact that the breakdown provided in
Table II in [17] does not in any way add up to 26 580 images. More so, we observed that
the age labels in the available dataset (from their website) are somewhat inconsistent with
what is provided in the paper. We worked around this to aggregate the scattered pieces of
age labels into coarse age groups and we eventually ended up with eight labels similar to
the ones indicated in [17], but some of our age groups covered wider ranges.

Face preprocessing and feature extraction
Each face image was preprocessed by converting it into an 8-bit grayscale image (if
coloured) resulting in pixel intensity values between 0 and 255. From the grayscale
image, the face was detected and aligned using a multi-stage method described in [4].
Before feature extraction, images were resized to various sizes depending on the feature
descriptor to be used. For LBP and raw image pixels features, images were resized to
120 × 100 pixels; for VGG16 and VGGFace features, images were resized to 224 × 224
pixels; for Inception-V3 and Xception, images were resized to 299 × 299 pixels. For raw
pixels and LBP features, feature histograms were obtained from ten (10) face regions
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defined around the forehead, the outer eye corners, the inner eye corners, the area under
the eyes, the area between the two eyes, the nose bridge, the nose lines, the cheek
area, the cheekbone areas, and the periocular face region. Features histograms from
each defined face region were aggregated and compacted using the method in [5]. We
selected compaction ranges of 5 and 10 for raw pixels and LBP, respectively. For LBP
features, LBP8,1 (8-pixel neighbourhood and pixel distance/radius of 1) was used. The
resulting features from each descriptor were then used to rank each face as described in
the previous section and to obtain age group ranks for each face for all age groups. The
resulting age group ranks were passed into SVR/QDA for age/age-group learning and
prediction. We then carried out comparative analyses of the performance of age group
ranking on each dataset and each feature descriptor.

5.2. Dataset-specific results

To investigate the impact of our AGR model, we trained SVR/QDA on:
1. the entire features vector before age group ranking (high-dimensional features);
2. the entire features along with the age group ranks (high-dimensional features);
3. the age group ranks alone (low-dimensional features).

Each feature type (before and after age group ranking), was normalized by scaling
the feature values to a narrow interval (0, 1) using the standard deviation and means of
the feature values. The MAEs obtained in each case are reported in Tab. 2. The value
of x in Tab. 2 refers to the number of rank-types multiplied by the number of age groups
in each dataset. So, from Tab. 1 and Tab. 2, it can be inferred that x = 64, 80, 88, and
96 for Adience, FAGE, FGnet, and PAL datasets respectively. From Tab. 2, it is obvious
that the age group ranks significantly reduced the age estimation error in all cases even
though it provides significantly low-dimensional features for age learning.

We further investigated the performance of each of the eight (8) rank-types for age
estimation and reported the results in Tab. 3. From Tab. 3, it can be observed that rank-
types 3, 4, and 6 generally gave the lowest MAE (values in boldface). For all raw pixel
features, rank-types 4 and 6 seem to give the best performance, except on PAL dataset
where rank-type 8 performed better than the two and that was the only instance where
rank-type 8 performed the best in the entire experiment. For LBP features, rank-types 3
and 6 gave the best performances. For both VGG16 and VGGFace features, rank-types
4 and 6 were the best. For Inception and Xception features, rank-types 3 and 6 were
the best; in fact, with Xception, rank-type 3 consistently outperformed rank-type 6 on
all datasets. On Adience dataset, the best performing rank-types are rank-types 3 and
6; on FAGE dataset, the best performing is rank-type 6; on FGnet dataset, the best
performing are rank-types 3, 4, and 6, but predominantly 4; while on PAL dataset, the
best performing are rank-types 3, 4, 6 and 8 (but the good performance of rank-type 8
is more like an outlier in the entire set of experiments).
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Tab. 2. MAE of age estimation results before and after age group ranking. Ftr. stands for feature(s)
and dim. stands for dimensionality.

ACC [%] MAE (years)
Experiment setting Ftr. type Ftr. dim. Adience FAGE FGnet PAL
Before AGR Raw pixel 520 (31.30, 56.79) 7.02 8.43 14.44
(features only) LBP 260 (29.59, 58.09) 6.56 8.36 12.32

VGG-16 4096 (19.06, 52.12) 6.25 6.94 10.39
VGGFace 2622 (18.89, 43.31) 5.18 4.65 5.07
Incep-V3 2048 (22.67, 41.97) 6.49 6.14 12.34
Xception 2048 (19.82, 36.51) 6.97 6.78 11.96

After AGR Raw pixel 520+x (36.93, 59.93) 6.72 8.36 13.23
(features + ranks) LBP 260+x (43.83, 64.54) 4.29 4.99 7.29

VGG-16 4096+x (19.25, 52.18) 6.10 6.77 10.19
VGGFace 2622+x (18.71, 42.52) 5.05 4.52 5.00
Incep-V3 2048+x (25.06, 45.72) 6.44 5.83 12.05
Xception 2048+x (17.93, 33.83) 6.95 6.26 11.68

After AGR Raw pixel x (60.24, 71.70) 6.22 7.27 12.44
(ranks only) LBP x (61.75, 75.48) 3.11 2.98 5.17

VGG-16 x (53.02, 74.94) 3.55 3.51 6.36
VGGFace x (67.90, 90.28) 3.71 2.84 4.52
Incep-V3 x (52.47, 75.38) 6.70 3.25 13.37
Xception x (52.68, 75.26) 6.88 3.43 11.60

This is significant as it shows that we can even lower age estimation error by using
just one of the rank-types, thereby dropping the dimension of features needed for age
learning from x to x/8; meaning just 8 feature dimension for Adience, 10 for FAGE,
11 for FGnet and 12 for PAL datasets. One observable similarity in the computation
of these three best-performing rank-types is the fact that they all involve either the
standard deviation of means (σµ) or the mean of standard deviations (µσ) as described
in Subsection 4.2. This shows that the combination of statistical and arithmetic measures
of the facial features properly captured the relationship between facial features within
and across age groups in low dimensions.

As expected, the performance of these rank-types on Adience is still relatively poor.
This is due to the few age groups vis-a-vis the dataset size – there are only 8 age groups
for ranking over 18 000 images. For this reason, we investigated the combination of
the different best-performing rank-types as well as the best-performing feature types on
Adience and reported the results in Tab. 4. Interestingly, with the proper combinations
of rank-types as well as feature types, the performance improves significantly and the
best result was obtained with the combination of rank-types 3 and 6 on the combination
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Tab. 3. MAE of age estimation with each rank-type (rt). Only exact ACC is shown for Adience.

Ftr. type ACC [%] MAE (years)
rt 1 to 8 Adience FAGE FGnet PAL
Raw pixel 48.79, 52.64, 53.58, 5.43, 6.17, 4.52, 6.68, 7.05, 5.51, 13.61, 15.07, 13.45,

55.63, 28.69, 62.35, 4.71, 6.11, 4.23, 4.93, 7.42, 5.02, 13.35, 10.44, 11.77,
26.56, 33.45 7.15, 6.64 9.25, 8.25 13.3, 9.84

LBP 51.34, 30.69, 57.05, 1.93, 2.98, 2.40, 1.88, 3.35, 2.17, 4.21, 7.92, 3.53,
36.47, 28.95, 49.70, 3.18, 4.74, 1.71, 3.27, 7.63, 1.79, 7.05, 10.14, 3.29,
24.58, 34.77 7.21, 4.88 9.61, 5.44 12.99, 8.09

VGG16 38.13, 43.11, 45.72, 3.13, 2.21, 2.91, 5.32, 3.71, 3.30, 9.57, 7.22, 5.72,
48.77, 36.43, 46.38, 2.57, 5.02, 2.10, 2.55, 5.61, 2.67, 5.10, 7.27, 5.71,
35.64, 38.80 6.78, 4.45 6.92, 5.85 11.11, 8.49

VGGFace 52.48, 54.41, 66.99, 3.22, 2.95, 3.14, 3.77, 3.41, 2.05, 6.27, 5.87, 4.27,
67.82, 58.04, 63.22, 3.01, 4.36, 2.20, 1.96, 3.74, 2.09, 3.99, 4.47, 4.40,
30.08, 31.82 7.10, 7.09 7.67, 6.86 11.84, 13.66

Incep-V3 42.30, 47.17, 47.02, 5.76, 6.42, 5.25, 4.29, 4.27, 2.44, 14.82, 14.30, 11.03,
45.12, 39.04, 49.65, 5.48, 5.97, 5.04, 2.61, 5.52, 2.76, 11.34, 12.93, 11.73,
35.41, 38.49 7.48, 6.36 7.74, 6.84 15.23, 14.26

Xception 36.41, 45.20, 46.62, 7.20, 6.95, 5.96, 5.02, 4.31, 2.84, 12.44, 11.95, 9.72,
45.14, 39.33, 46.61, 5.95, 6.62, 5.99, 2.84, 5.56, 3.37, 9.97, 10.65, 9.93,
36.36, 39.37 7.10, 7.00 7.80, 6.17 14.03, 13.53

of VGGFace, LBP, Raw Pixel, Inception, and Xception features. Fig. 3 shows sample
images from the four datasets for which age prediction with AGR succeeded and those
for which it failed using the best-performing features.

Tab. 5 shows some of the most recently reported state-of-the-art results on Adience,
FGnet, and PAL datasets (FAGE is a relatively new dataset, so there are no existing
methods on it to compare with). In the table, the asterisk (*) in the third column (ftrs.
dim.) refers to those in which the exact feature dimension was not explicitly reported in
the literature. However, it is common knowledge that most of the deep learning features
are in the order of thousands, while our method uses features in the order of tens. From
Tab. 5, it is seen that our method competes significantly with the best of these methods
achieving the lowest MAEs on FGnet (1.79 years) and PAL (3.29 years) and the best
exact accuracy (85.1%) on Adience; VLRIX stands for the combination of VGGFace,
LBP, Raw pixel, Inception and Xception features as seen in the third to the last row
of Tab. 4. We consider this a significant achievement considering the highly reduced
feature dimension generated by our AGR model and the fact that it achieves this even
with fairly simple feature extraction techniques (raw pixel and LBP), thus making our
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Tab. 4. Different combinations of rank-types and feature types on Adience dataset. Abbreviations:
I – Inception, L – LBP, R – Raw pixel, V – VGGFace, V16 – VGG16, X – Xception.

Rank-types Feature types Ftr. dim. ACC (%)
Exact± std. 1-off± std.

3, 4 All 96 83.7±2.10 93.2±1.07

3, 6 All 96 84.0±2.79 93.9±1.26

4, 6 All 96 82.1±2.91 93.1±1.54

3, 4, 6 All 144 83.7±2.56 93.6±1.22

3, 4 X, I 32 55.8±4.31 78.4±2.23

3, 6 X, I, L, R 64 79.4±2.12 89.5±1.18

4, 6 V16, V, L, R, I 80 83.2±2.88 93.4±1.34

4, 6 V16, V, L, R, X 80 83.4±3.02 93.6±1.47

3, 6 V16, V, L, R, X 80 84.8±3.11 94.2±1.21

3, 6 V16, V, L, R, I 80 84.5±2.88 94.0±1.38

3, 6 V, L, R, I, X 80 85.1±2.33 94.6±0.88

3, 4, 6 V, L, R 72 85.5±3.12 94.3±1.15

3, 4, 6 V, L, R, V16 96 84.6±2.99 93.7±1.39

results more easily reproducible. All these results had been achieved with features of
relatively low dimension – 80 on Adience, 11 on FGnet, and 12 on PAL.

CS often gives a better picture of the performance of an age estimation algorithm at
different levels of the prediction error. We plotted our CS scores along with some of the
best results on FGnet for which CS plots were reported and compared the results. Fig. 4
further confirms the significant improvement offered by our AGR model (AGR-LBP-r6
and AGR-VGGFace-r4) on FGnet. At an error level of 0, only EBIF [14] started ahead
of the AGR model and AGR overtook it at error level 1. AGR performs at par with
GEF up to error level 1 after which AGR significantly overtakes. Generally, from error
level 2 upwards, AGR outperforms all the compared methods and finishes far ahead of
them with CS of 95% at error level 5 and 99% at error level 10. Previous works on PAL
rarely report their CS scores so there will be no basis for such comparisons, thus we leave
out the CS curve on PAL. Also, because the FAGE dataset is new, there are no previous
results with which we can compare it.

5.3. Cross-Dataset Validation

To better study the generalization of our model, we performed cross-dataset validation
in two settings:
1. on FGnet and PAL datasets;
2. on FGnet, PAL, and FAGE datasets.
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Tab. 5. Comparison with previous results on Adience, FGnet and PAL. rt: rank-type. Note the 3rd
column: filters dimension.

filters dimension ACC [%] MAE (years)
Method Year (Adience, FGnet, PAL) Adience FGnet PAL

(Exact, 1-off)

EBIF [14] 2011 EBIF* – 3.17 –
W-RS [50] 2013 100–900 – – 5.99
Joint-Learn [6] 2014 LBP* – – 5.26
DeepRank [49] 2015 500 – – 4.31
GEF [30] 2015 LBP,BIF,HOG* – 2.81 –
CNN [26] 2015 CNN ftrs.* (50.7, 84.7) – –
DA [39] 2017 VGG-16 ftrs.* (60.0, 94.5) – –
DNN [41] 2017 VGG-16 ftrs.* (62.8, 95.8) – –
ODFL [28] 2017 CNN ftrs.* – 3.89 –
All-in-one [37] 2017 CNN ftrs.* – 2.00 –
DEX [40] 2018 VGG-16 ftrs.* (64.0, 96.6) 3.09 –
Group-n [47] 2018 VGG-16 ftrs.* – 2.96 –
DRF [42] 2018 VGG-16 ftrs.* – 3.85 –
CNN2ELM [16] 2018 CNN ftrs.* (66.49, –) – –
Joint-Learn [31] 2018 LBP(8,1) – – 5.26
MVL [35] 2018 CNN ftrs.* – 2.68 –
BridgeNet [27] 2019 CNN ftrs.* – 2.56 –
TransLearn [15] 2019 4096 VGG-16 ftrs. – – 3.79
SORD [13] 2019 VGG-16 ftrs.* (59.6, –) – –
ODL [29] 2019 VGGFace ftrs.* – 2.92 3.99
DDRF [43] 2019 VGG-16 ftrs.* – 3.47 –
C3AE [51] 2019 * – 2.95 –
DOEL [48] 2020 ResNet ftrs. * – 3.44 –
DLC [1] 2020 CNN ftrs.* (83.1, 93.8) – –
SR [33] 2020 CNN ftrs.* – – 8.33
DCN [23] 2022 VGG ftrs.* – 2.13 –
ABC+Swin [44] 2023 Transformer ftrs.* (56.1, –) 2.52 –
AGR-LBP (rt6) Ours [8, 11, 12] (49.7, 68.9) 1.79 3.29
AGR-VLRIX (rt3+rt6) Ours [80, –, –] (85.1, 94.6) – –
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Fig. 3. Sample images and their true/predicted ages. from the 1st to the last row: FAGE, FGnet, PAL
and Adience. Predicted ages are in parentheses.

In both settings, we used LBP (rank-type 6) and VGGFace (rank-type 4) features since
they were the two best-performing features. In the second setting, we trained and tested
the model on a combination of FGnet, PAL, and FAGE datasets. The Adience dataset
is not used for Cross-dataset validation because it does not contain exact ages and is
therefore unsuitable for a regression task as is the case with the other 3 datasets.

In setting 1, since both datasets cover separate age ranges, we selected the intersection
of the age ranges covered (i. e. 18-69 years) and selected all faces falling within this age
range. We found 362 FGnet images and 820 PAL images within this age range, making
1182 images altogether. We then ranked this new set of 1182 images on the entire set of
FGnet and referred to it as FG-ranked, we also ranked it on the entire set of PAL images
and referred to it as PAL-ranked. We trained and tested FG-ranked and PAL-ranked
datasets using 5-fold cross-validation and obtained MAEs of 8.86 and 6.27 years with
LBP features and 4.55 and 4.32 years with VGGFace features on FG-ranked and PAL-
ranked datasets, respectively. As expected, the MAEs are higher in the cross-dataset
environment, however, the result is worse when FGnet images are used to rank the data.
This is because FGnet has 44 images less than PAL and FGnet contains 7 missing ages,
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Fig. 4. CS curves of best-reported works on FGnet

while PAL contains only 1 missing age. PAL also covers a wider age range and contains
more images for its age groups than FGnet. This goes to show that with more images
available for age ranking and more ages represented within each age group, AGR offers
better performance.

In the second setting, because of the differences in the number of age groups in each
of the combined datasets, we created a new set of 15 age groups covering all the age
groups in all three datasets and ranked each image in the combined dataset on this.
There are a total of 2715 images in the combined dataset. We trained and tested with
5-fold cross-validation and obtained MAEs of 4.03 years and 4.33 years for VGGFace and
LBP, respectively. However, the increased error rate is attributed to the ethnic diversity
of the three datasets and the possibility that the age groups have become relatively too
much for the dataset size.

The improved performance of VGGFace over LBP is an indication of the expressive-
ness of deep features in more complicated settings such as cross-dataset validation and
with more data (as in setting 2). Generally speaking, the MAEs in both cross-dataset
validation settings did not soar beyond expectations despite the wide inter-dataset vari-
ations; this is a pointer to the robustness of the AGR model and the intuition of age
group ranking.
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6. Conclusion

In this work, an age group ranking approach for facial age estimation was developed.
The developed model uses the intuition that age can be better estimated from faces
when there is sufficient information about other faces in several different age groups to
rank a query face. The developed method was tested and validated on four datasets
(FAGE, FGnet, PAL, and Adience). Experiments were performed on these datasets
using standard protocols and the results compete significantly with the state-of-the-
art age estimation methods. We further investigated the generalization of the method
using cross-dataset validation and it turned out that the developed AGR method gives
relatively good performance even across different datasets. The intuition of age group
ranking developed here is superior to the existing age ranking methods in that age group
ranking ranks images by age group rather than by exact ages thus making more data
available for an image to be ranked. This is done without the need for prior knowledge
of a particular age group rank via learning as the age ranking model uses available
aging information from all age groups to rank a given face. More interestingly, the AGR
model does not depend extensively on deep learning models as in current works but still
competes significantly with deep-learning-based age estimation models. The findings
from this work show that despite the impressive results of deep learning in recent times,
the impact of age group ranking on face-based age estimation is indeed significant and
should not be discarded. This work has also shown that age estimation via age-group
ranking is more intuitive and gives better performance than direct age estimation from
a single face.

The major limitation of the AGR model is that it does not fit directly into a deep
learning architecture as it requires features to be extracted and enhanced before it is
been passed to a classifier/regressor. However, the AGR model works when on simple
features such as raw pixels as well as deep features as the features are further enriched
with age group information before they are passed into a classifier/regressor.

Future works could consider building deep learning models that can explore the
relationship between faces in terms of their age groups while estimating the age of a
given face image. Future works could also consider using more rank-types and different
age groupings to understand the impact of the number of age groups vis-a-vis the age
range and the number of images within each age group. Considering the impact of the
statistical measures of variation used in DoFV, there is a need to explore more statistical
measures that could improve age estimation accuracy.
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