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Abstract Generative design is used to efficiently generate design solutions with powerful computational
methods. Generative design based on shape grammar is currently the most commonly used approach,
but it is difficult for shape grammar to formally analyze the generated pattern. Graph grammar derived
from one-dimensional character grammar is mainly used for generating and analyzing abstract models
of visual languages. However, there is a significant gap between the generated node-edge graphs and
the representation of shape appearance. To address these problems, we propose an improved generative
design approach based on virtual-node based continuous Coordinate Graph Grammar (vcCGG). This
approach defines a new type of grammatical rule named node transformation rules to convert nodes
into shapes with node transformation applications. By combining node transformation applications and
L-applications in vcCGG, we can generate a node-edge graph as the structure of the pattern through
L-applications, and then draw the shape outline, next adjust the positions of these shapes, thus relating
abstract structures and the physical layouts of visual languages. At the end of the paper, we provide an
example application of this approach: generating an illustration from Emma Talbot using a combination
of node transformation applications and L-applications.

Keywords: generative design; graph grammar; shape grammar; node transformation rules; pattern
drawing.

1. Introduction

Design is a complex solution process that involves professional knowledge, innovative
ability, comprehensive experience, aesthetic literacy, and use of scientific technology.
With the rapid development and popularization of new intelligent design automation
technologies such as machine learning, additive manufacturing, artificial intelligence,
and cloud computing, design approaches are constantly expanding. As a developing
design approach, generative design has been extensively studied in academia. Since the
introduction of generative design based on shape grammar, as proposed by G. Stiny
and J. Gips in 1971 [18], generative design has been introduced into different fields such
as architectural design [5], product customization design [9], and visual communication
design [14].

Shape grammar is a generation system oriented toward design. It is a design infer-
ence approach based on rules, using simple shapes as basic elements to establish the
rules for the generation of complex shapes. The foundational rules involve spatial trans-
formations such as translation, scaling, rotation and mirroring, which make one shape
part of another shape. With limited predefined rules, there can be an infinite number of
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designs generated through shape grammar. Following predefined rules, shape grammar
can iteratively replace shapes to generate various patterns. However, shape grammar
can generate only the shapes that consist of simple shapes such as lines, points and
rectangles. Therefore, it is not yet widely used in computer-aided architectural design
(CAAD) applications. Most designers design buildings manually or semi-automatically
on CAD platforms, e.g. Revit and AutoCAD.

Shape grammar focuses on generative design, while graph grammar derived from
one-dimensional character grammar focuses on modeling and analyzing the syntax and
semantics of visual languages. Shape grammar supports only unidirectional workflows.
It takes the initial shape and transformation rules as inputs to generate a preliminary
design and then adjusts the preliminary design by the rules to generate the final design.
In contrast, graph grammars have a bidirectional workflow across derivation and speci-
fication. Similarly, the graph grammar derivation process derives graphs by repeatedly
applying given productions. The graph grammar reduction process, on the other hand,
takes graphs and productions as inputs to parse the graphs by applying productions in a
bottom-up fashion. However, there is a significant gap between the generated node-edge
graphs and the representation of shape appearance for graph grammar.

In our previous work, we proposed an enhanced grammar system for shape gener-
ation [12]. This system defines shape rules to transform edges into shapes by shape
applications, which builds an inherent relation between abstract structures and physical
layouts of visual languages. The main weakness of this system is the position invariance
that reduces the flexibility of design. To address the aforementioned issue, our research
focuses on an analysis of semantic relations among shapes that make up a pattern. We
propose a generative design approach based on vCGG (virtual-node based Coordinate
Graph Grammar) [10]. Our approach defines a new type of grammatical rule named
node transformation rules to convert nodes into shapes with node transformation appli-
cations. By combining node transformation applications and L-applications in vCGG, we
can generate a node-edge graph as the structure of the pattern through L-applications,
and then draw the outlines of shapes with node transformation applications, next ad-
justing the positions of these shapes.

In summary, this paper presents an improved generative design approach that au-
tomatically generates or validates patterns conforming to the specified rules. First, the
structure of the target pattern is generated through vCGG, and then the nodes are
converted into shapes according to the node transformation rules. Finally, the position
of the shape is adjusted based on the edge attributes, and the target pattern is gener-
ated. This approach can set L-applications and node transformation rules in advance for
drawing patterns, and can also formally validate a target pattern to determine whether
it belongs to the pattern generated by the specified rules.

This paper addresses the aforementioned problems and makes the following contri-
butions:
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• An improved approach for grammar specification, grammar induction, generation and
validation of pattern based on the vCGG formalism.

• A complete graph grammar for specifying and analyzing patterns that are composed
of multiple geometric shapes.

• According to the concrete requirements, productions and transformation rules are
designed to achieve customized designs.
The rest of this paper is organized as follows. Section 2 reviews the related works,

including patterns generated by shape grammars, several typical graph grammars and
our approach. Section 3 introduces the approach framework, including vCGG and node
transformation rules. Next, Section 4 gives an example of the Cloud & Bunny rabbit
pattern from Emma Talbot. Section 5 compares our approach and other generative
design approaches. Finally, Section 6 concludes the paper and mentions future work.

2. Related works

In 1971, G. Stiny and J. Gips proposed that shape grammar is a generative system ori-
ented toward design. G.Stiny detailed the concept and entire application process of shape
grammar in 1980 [17]. Design based on shape grammar was first applied in the field of
architectural design. M. Agarwal and J. Cagan [1] proposed the coffee machine shape
grammar as the first application of shape grammar in product design, demonstrating its
use for generating single products before gradually being applied to product design more
broadly. The coffee machine grammar is a parametric grammar consisting of 100 man-
ually created rules and labeled two-dimensional shape grammar implemented through
a Java-based application program. Its objective is to provide designers with selectable
design inspirations during the conceptual exploration phase. However, this method has
limitations because its conceptual nature lacks practical production benefits, resulting
in visual operational difficulties due to numerous labels.

H. H. Chau [3] concluded, through analysis of various electronic and fast-moving
consumer products, that the appearance of these products is largely determined by
straight lines, arcs, and their orthogonal projections. M. Pugliese and J. Cagan [13]
summarized previous research methods and found that grammar has become a design
tool for creating structures and functional requirements. However, there is no specific
method for establishing and maintaining product brand characteristics in the field of
product generation design. The field faces two challenges: engineers and designers need
tools to help understand, express, and maintain product brands, and engineers, designers,
and brand strategists need a common platform to discuss product brands. X. Chen
et al. [4] focused on geometric shape in packaging design, proposing an application of
shape grammar for packaging design research with personal care bottles as an example in
experimentation. S. Wannarumon et al. [20] proposed a method for generating jewelry
designs using shape grammar to support designers in exploring shapes as inspiration
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sources with ring design as practice examples. S. Garcia and L.Romao [7] coded various
types embedded in multifunctional chair classes to develop generative design tools usable
during the chair concept design stage. Y. Yu et al. [21] proposed a method of generating
origami pattern based on shape grammar recursive applications of shape rewriting rules.
In addition, shape grammar provides a perspective and modeling technique for creating
origami tessellation patterns.

Compared to shape grammar in the field of design, graph grammar has the character-
istics of automated generation and specification. Designers can explore different design
options by defining symbols, rules, and parameters, quickly generate a large number of
design schemes, and make adjustments and modifications when necessary to improve
design efficiency and innovation. H. Bunke [2] proposed attributed programmed graph
grammars as a generative tool in image understanding. Based on that, an image un-
derstanding system was built to extract descriptions from input images, where a system
consists of two major subsystems for preprocessing and segmentation, and understand-
ing, respectively. H. Göttler et al. [8] described the data structures in terms of attributed
graphs and their changes in terms of attributed graph productions in an object-oriented
manner, applying Graph Grammar to CAD systems.

In the field of architectural design, X. Wang et al. [19] presented a generic approach
for grammar specification, grammar induction, validation, and design generation of
house floor plans using their path graphs based on the reserved graph grammar for-
malism (RGG). This approach validates floor plans in different styles with user-specified
graph productions and the derivation process is capable of generating floor plan designs.
G. Ślusarczyk [23] proposed a framework for supporting the design process by defining
design requirements over graph-based representations of designs. First, hierarchical lay-
out graph grammars are used to generate hierarchical layout hypergraphs (HL-graphs)
that represent designs; then, local and global graph requirements are defined over HL-
graphs, which correspond to design constraints. The proposed ontological interpretations
transform first-order and monadic second-order logic formulas expressing design criteria
into equivalent local and global graph requirements. The satisfiability of graph require-
ments by representations of designs allows for checking correctness of design solutions. In
subsequent research, G. Ślusarczyk et al. [24] proposed CP-graph grammars to support
building layout design, where the grammar rules are combined with semantic-driven
embedding transformations and the derivations in this type of grammars are defined.
The possibility of relating attributes of right-hand sides to that of the left-hand sides
enables the system to capture parametric modelling knowledge. The proposed gener-
ative method allows the system to automatically model alternative floor layouts with
similar structures but different geometry and parameters, which can be easily adapted
to different use case scenarios and environmental conditions.

Apart from the architectural design, graph grammar has been applied to different

Machine GRAPHICS & VISION 33(1):3–20, 2024. DOI: 10.22630/MGV.2024.33.1.1 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.1


Y. Liu, Y. Zhou, F. Yang, S. Li, J. Wu 7

fields, including mechanical parts description [6], XML validation [16], cluster analy-
sis [22], entity-relationship (E-R) diagram validation [11], and Web pattern recognition
and validation [15]. Overall, graph grammar is a powerful tool for defining and validat-
ing graph models, hence the generative design method in this paper is proposed within
the framework of graph grammar.

Because patterns are composed of various styles of shapes, there is a positional cor-
relation between each shape. The structure of patterns is generated through graph
grammar, which abstracts the positional relationships between various shapes. Then
we convert the node-edge graph generated by graph grammar into shapes through node
transformation rules, enabling graph grammar to generate shapes and draw patterns.
Moreover, graph grammar parsing can check whether a target pattern belongs to the
pattern set defined by the rules.

3. Improved generative design approach framework

VCGG is divided into virtual-node based discrete Coordinate Graph Grammar (vd-
CGG) and virtual-node based continuous Coordinate Graph Grammar (vcCGG) based
on different granularity descriptions of spatial semantics. Due to the strict coordinate
matching mechanism required in this approach, we choose vcCGG as the basic frame-
work. Below is the theoretical framework of the improved approach.

Definition 3.1. A directed graph G on a given label set L is a 2-tuple (N, E).
L consists of a virtual label set Lv and a real label set Lr, where Lr consists of a non-
terminal label set LNT and a terminal label set LT . N is a node set and consists of a
virtual node set NV and a real node set Nr, where Nr consists of a nonterminal node set
NNT and a terminal node set NT . E is a directed edge set.

Mapping for G includes the following:
• fNL : N → L is a mapping that assigns a label l ∈ L to node n ∈ N ;
• fNC : N → R × R is a mapping that assigns a 2D coordinate c ∈ R × R to node

n ∈ N ;
• fENs

: E → N is a mapping that assigns the start node to directed edge e ∈ E;
• fENe

: E → N is a mapping that assigns the end node to directed edge e ∈ E.

Definition 3.2. A production p: GL := GR is made up of a left-hand-side (or left
graph) GL and a right-hand-side (or right graph) GR. For a production, there exists a
bijection fNN : GL.Nv ↔ GR.Nv between Nv ∈ GL and Nv ∈ GR, where GL.Nv is a
virtual node set Nv of GL and GR.Nv is a virtual node set Nv of GR.

A production also satisfies the following conditions:
• ∀n((n ∈ GL.Nv) ⇒ (fNC(n) = f ′

NC(fNN (n)))), where fNC is a mapping that assigns
a coordinate to node n ∈ GL and f ′

NC is a mapping that assigns a coordinate to
n ∈ GR;
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Fig. 1. vcCGG production.
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Fig. 2. The isomorphic graphs in vcCGG.

• ∀n((n ∈ GL.Nv) ⇒ (fNL(n) = f ′
NL(fNN (n)))), where fNL is a mapping that assigns

a label to node n ∈ GL and f ′
NL is a mapping that assigns a label to n ∈ GR;

• ∀n1, n2((n1, n2 ∈ GL.Nv) ∧ (n1 ̸= n2) ⇒ (fNL(n1) ̸= fNL(n2)));
• ∀n1, n2((n1, n2 ∈ GR.Nv) ∧ (n1 ̸= n2) ⇒ (f ′

NL(n1) ̸= f ′
NL(n2))).

VcCGG stipulates that there is a bijection between the virtual node sets at GL and
GR, and the corresponding nodes have the same labels and coordinates. In addition,
to avoid ambiguity during graph embedding, each virtual node in the same graph must
have a unique label, which can be represented by a unique integer.

For example, Fig. 1 is a legal vcCGG production, where the dashed circle represents
the virtual nodes and the solid circle represents the real nodes. There is a bijection
between the left and right graphs of the production, and the corresponding nodes have
the same labels ‘1’, ‘2’ and equal coordinates (0, 0) and (0, 4).

Definition 3.3. Let G and Q be directed graphs. G and Q are isomorphic, denoted
as G ≈ Q, if and only if the following conditions hold:

• There exists a bijection between the nodes of G and Q, namely, fNN : G.N ↔ Q.N ;
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• There exists a bijection between the edges of G and Q, namely, fEE : G.E ↔ Q.E;
• ∀n((n ∈ G.N) ∨ (n ∈ Q.N) ⇒ (fNL(n) ∈ Lv) ∨ (f ′

NL(fNN (n)) ∈ Lv) ∨ (fNL(n) =
f ′

NL(fNN (n)))), where fNL is a mapping that assigns a label to node n ∈ G; f ′
NL is

a mapping that assigns a label to n ∈ Q;
• ∀e((e ∈ G.E) ∨ (e ∈ Q.E) ⇒ (fNN (fENs

(e)) = fENs
(fEE(e))));

• ∀e((e ∈ G.E) ∨ (e ∈ Q.E) ⇒ (fNN (fENe (e)) = fENe(fEE(e)))).

When determining whether a pair of graphs satisfies the isomorphic condition, virtual
nodes have a higher abstract degree than real nodes and can match any labeled node.
Fig. 2 is an example of graph isomorphism in vcCGG, where all nodes and edges satisfy
a bijective relationship. Real node ‘a’ and the corresponding nodes must have the same
label, while virtual nodes ‘1’ and ‘2’ can match any labeled node. In Fig. 2, node ‘1’
matches ‘b’ and node ‘2’ matches node ‘e’.

Definition 3.4. Let G be a directed graph referred to as the host graph and Q be the
subgraph of G. Let GL|R be the left or the right hand-side of a production. Q is called
a redex of G with respect to GL|R, denoted as Q ∈ redex(G, GL|R) if and only if the
following conditions hold:

• Q ≈ GL|R;
• ∀n((n ∈ Q.N ∧ ((f ′

NL(fNN (n)) ∈ Lr)) ⇒
(ds(n) = ds(fNN (n))) ∧ (de(n) = de(fNN (n))));

• ∀n1, n2((n1, n2 ∈ Q.N) ⇒ (fNC(n1) − fNC(n2) = f ′
NC(fNN (n1)) − f ′

NC(fNN (n2)))).

The nodes of a redex could be divided into two types: the nodes matched by the vir-
tual nodes (context nodes) of the production, and the nodes matched by the non-virtual
nodes (inner nodes) of the production. All the edges between the redex and the rest
host graph are only allowed to be connected with the former type of nodes.

Definition 3.5. A L/R application to graph G is a process that generates graph
G′ using production p: GL := GR, denoted as G →p G′(L-application) or G →p G′(R-
application).

The L-application in vcCGG is as follows:
1. Generate an instance of the production as a copy of the production.
2. Translate the coordinates of the instance’s GR by the offset between any matched

nodes in the redex Q and GL.
3. Delete edges in the redex Q and nodes that match the real nodes in GL from the host

graph.
4. According to the mapping between the virtual node of GL and the redex Q, glue the

virtual node of GR to the corresponding node in the redex Q and remove the virtual
label from the host graph.
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e2

e1
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e2

e1

e2

 Q

Host graph G

Fig. 3. New host graphs generated by a production.

Fig. 3 depicts an L-application process that generates new host graph G′ using pro-
duction p: GL := GR.
1. Generate an instance of production p.
2. Find a redex of G with respect to GL: In the host graph G, we denote a graph in the

dashed box as graph Q. Q ≈ GL and the coordinate differences of the corresponding
nodes are (2, 2), so Q ∈ redex(G, GL|R).

3. Subtract all node coordinates of GR (2, 2).
4. Delete edge ‘e1’, ‘e2’ and node ‘c’ from G.
5. Glue virtual node ‘1’ of GR to real node ‘a’ of G and virtual node ‘2’ of GR to real

node ‘d’ of G; and remove the virtual label from the host graph.
Definition 3.6. A node transformation rule is a 4-tuple(cset, cpoint, ops, parm),

where
• cset is a set of coordinates as the points to represent a shape;
• cpoint is the mean point of cset;
• ops is the operations performed on the cset, such as translation, rotation, scaling,

etc.;
• parm is the parameter of the ops, such as the offset of translation or the angle of

rotation.
Given a node transformation rule, the node transformation application is a process

that draws the outline of a shape from the perspective of the user using node transfor-
mation rules. Below are the steps for a node transformation application:
1. Draw a shape based on the outline described by a node’s cset, and make the cpoint

coincide with the node. As shown in Fig. 4, a node transformation rule is to transform
a node into a rectangle. Use this node transformation rule for node A and B: make the
cpoint of this rectangle coincide with node A and B, and transform edge e1 connecting
A and B to line segment l1;
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:=
cpoint

A B

(0, 0) (5, 0)

(0, 0) (5, 0)

A node transformation rule

（a）

(b)

(c)

 

 

edge

line segment

Fig. 4. Demonstration figure of step 1.

2. As shown in Fig. 5, deform the shape by the following methods according to ops and
parm:

(a) Translation: Let A be a shape, and the position of A can change along the X and
Y axes, i.e.,
∀(x, y) ∈ A, (x′, y′) = (x + a, y + b),
where a is the distance that the position of A changes on the X axes and b is the
distance that the position of A changes on the Y axes.

(b) Scale: Let A be a shape that can expand or shrink in a certain proportion, i.e.,

∀(x, y) ∈ A,
[

x′

y′

]
=

[
S 0
0 S

] [
x
y

]
, where S is the factor by which shape A

expands or shrinks.
(c) Stretch: Let A be a shape that can be elongated or shortened along the X and Y

axes. Specifically, if the factors of elongation or shortening along the X and Y axes
are equal, A can be considered to be scaled, i.e.,

∀ (x, y) ∈ A,
[

x′

y′

]
=

[
Sx 0
0 Sy

] [
x
y

]
,

where Sx is the factor by which A is elongated or shortened along the X axes and
Sy is the factor by which A is elongated or shortened along the Y axes.

(d) Rotate:Let A be a shape that can rotate θ (0 < θ < 2π) counterclockwise around
the cpoint MA(XA, YA), i.e.,
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a) translation b) scale c) stretch

d) rotate e) reflect

Fig. 5. A new shape formed by 5 operations.

∀ (x, y) ∈ A, (x′, y′) = ((XA − x) cosθ − (YA − y) sin θ +XA, (XA −x) sin θ +(YA −
y) cos θ + YA).

(e) Reflect: Let A be a shape. ∀l : PX + QY + M = 0(P 2 + Q2 > 0), new shape A′ is
a mirror image of A across line l, i.e.,
∀ (x, y) ∈ A, (x′, y′) =

(
x − 2P (P x+Qy+M)

P 2+Q2 , y − 2Q(P x+Qy+M)
P 2+Q2

)
.

3. Render the shape from the user’s perspective based on the outline described by the
cset through its own operations.

4. Adjust the position of the shape based on the attributes of the line segment l1.
Definition 3.7. For shape A and shape B, A and B are separated if and only if

∃l : Px + Qy + M = 0(P 2 + Q2 > 0), A and B are on both sides of line l, as shown in
Fig. 6.

As shown in Fig. 7, for shape A and B, MA is the cpoint of A and MB is the cpoint of
B. MA and MB are connected through a directed line segment lAB , where MA is the start
point of lAB and MB is the end point of lAB . The position of MA will change according
to the attribute of lAB , and the position of A will be changed following the changes in
MA position. The attribute of lAB is ‘far from d’ or ‘near d’, where d is the distance
at which the MA position changes. When using node transformation rules to transform
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separated not separated

Fig. 6. The two shapes are separated or not.

near

B A

touch

near concentric

Fig. 7. A is near B; A touches B; A is concentric to B.

node A and B into shape A and B, it is necessary to ensure that they are separated.
Therefore, if the attribute of lAB is ‘far from d’, regardless of the value of d, A and B are
still separated. So, we won’t limit the value of d when the attribute of lAB is ‘far from d’.

Definition 3.8. If the attribute of lAB is ‘near d’, A may touch B or be concentric
with B during the process of changing the position of A.

• Touch: A.cset ∧ B.cset ̸= ∅ for the first time;
• Concentric: MA coincides with MB.

For convenience, when users want A to touch B or be concentric with B, they can
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touch

touch

touch

touch

A

B

C

C

A

B

touch

A
B

C

B

C

A

touch

C

AB

C

A
B

（a）

(b)

Fig. 8. The final position of A will change due to the order of touch B or C.

set the lAB attribute to ‘touch’ or ‘concentric’. Before the position of MA changes, make
Dmax = |MA − MB |. So, 0 < d ≤ Dmax when the attribute of lAB is ‘near d’.

As shown in Fig. 8, for shape A, when MA is the starting point of two or more
directed line segments, the position of A must to be changed at least twice, and different
changing sequences can lead to different positions. As shown in the Fig. 8, A needs to
touch both B and C, and the final position of A will change based on the order of it
touches B or C. Therefore:

• When the X coordinate of the end nodes is different, the position of start node first
changes toward the end node with a smaller X coordinate;

• When the X coordinate of the end nodes is the same, the position of start node first
changes toward the end node with a smaller Y coordinate.

4. An example on rabbit pattern

This section gives an example to illustrating an application of the improved approach,
where a set of designed productions and node transformation rules are used to generate
a section of the Cloud & Bunny rabbit pattern from Emma Talbot. Emma is passionate
about mixed media research and enjoys using various media to create textures, patterns,
and collages to integrate into her artistic creations. The Cloud & Bunny rabbit pattern
is composed of simple geometric shapes such as arcs, rectangles, triangles, etc., forming
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Fig. 9. Productions for a bunny rabbit.

patterns of rabbits, flowers, and clouds. In this paper, a rabbit pattern is selected as the
generated pattern. Fig. 9 shows a set of vcCGG productions and eight node transfor-
mation rules as a grammar set for the rabbit pattern, where the vcCGG productions are
used for the abstract models of pattern and node transformation rules describe physical
layouts. For the vcCGG productions, the initial symbol ‘λ’ denotes the beginning of
graph grammar. ‘λ’ is used to generate the right graph of p1 through production p1 and
then generate the target structure of the pattern based on the remaining productions
p2-p6. For the productions in Fig. 9, virtual nodes, which are represented by a dashed
circle and labeled ‘1’, ‘2’, and ‘3’, are used to match coordinates; real nodes, which are
represented by a solid circle and labelled ‘ 1⃝’, ‘ 2⃝’, and ‘ 3⃝’, are converted into shapes.
For the node transformation rules in Fig. 9, we set eight shapes to generate the final
pattern, including circle, rectangle, triangle, etc.

Fig. 10 shows a process of generating a rabbit pattern using the productions and
node transformation rules above. When using an L-application to generate the structure
of the target pattern, an attribute is assigned to each generated edge. The attribute
can be ‘near’, ‘touch’ or ‘concentric’. If the attribute is ‘near’, the distance needs to be
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Fig. 10. Generation of a bunny rabbit.

given as parameter. When using node transformation rules for the final generated node-
edge graph, each node is traversed and converted into a shape based on the associated
label. Then, each edge is traversed, the position of each shape is adjusted based on the
attribute of each edge, and the target pattern is ultimately obtained.

5. Comparisons with other generative design approaches

In this section, we compare our approach proposed in this paper with shape grammar,
edge transformation grammar [12] and CP-graph grammar [24]. Shape grammar is
a design inference approach based on rules, using simple shapes as basic elements to
establish the rules for the generation of complex shapes. Edge transformation grammar
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defines shape rules to transform edges into shapes by shape applications. The CP-
graph grammar is used to automatically generate CP-graphs corresponding to new layout
designs with non-geometrical properties (like sizes, areas) specified by graph attributes.

As Table 1 shows, these approaches can all design shapes through derivation. How-
ever, when drawing patterns using shape grammar, different shapes of a pattern are
related only in terms of position and have no semantic relations. Therefore, it is difficult
to formally analyze the generated pattern. Our approach based on vcCGG can formally
validate a target pattern to determine whether it belongs to the pattern generated by
the specified rules by combining node transformation applications and L-applications.
Moreover, after designing the transformation rules for shape grammar, edge transforma-
tion grammar and CP-graph grammar, they are unable to adjust the size and position of
the shape, resulting in a lack of position and size variability. However, for our approach,
after generating the structure of the target pattern through vCGG, the nodes which are
converted into shapes according to the node transformation rules can adjust the size and
position of themselves. Therefore, in terms of position and size variability, our approach
is superior to shape grammar and edge transformation grammar.

Tab. 1. Comparison between approach in this paper, shape grammar, edge transformation grammar
and CP-graph grammar.

Approach Derivation Parsing Positional and size variability
Our approach ✓ ✓ ✓
Shape grammar ✓ × ×
Edge transformation system ✓ ✓ ×
CP-graph grammar ✓ ✓ ×

6. Conclusions

When designers use shape grammar to generate patterns, there are no semantic relations
among the various shapes that make up the pattern or the small patterns that make up
the large patterns. Therefore, it is difficult to formally analyze the generated patterns. In
addition, graph grammar is primarily used for generating and analyzing abstract models
of visual languages. There is a significant gap between the generated node-edge graphs
and the visual representation of shapes, so few researchers have applied these concepts
in the design field.

This paper proposes an improved generative design approach for pattern drawing,
which introduces node transformation rules in the framework of vcCGG. First, the struc-
ture of the target pattern is generated through vcCGG, and then the nodes are converted
into shapes according to the node transformation rules. Finally, the position of each
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shape is adjusted based on the edge attributes, and the target pattern is generated. In
this approach, L-applications and node transformation rules are set in advance for draw-
ing patterns, and a target pattern can be formally analyzed to determine whether it is
a pattern generated based on the specified rules.

In the future, we plan to improve the theoretical framework of the improved approach
and consider adding gray values to the node transformation rules. If it goes well, we
plan to add RGB to it so that the improved approach can be used to design the colored
patterns. Moreover, we plan to develop a support system for this approach with a friendly
GUI for end users to design graph productions and node transformation rules. The
system platform will provide support for grammatical operations and the implementation
of related applications.
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Abstract Age prediction has become an important Computer Vision task. Although this task requires
the age of an individual to be predicted from a given face, research has shown that it is more intuitive and
easier for humans to decide which of two individuals is older than to decide how old an individual is. This
work follows this intuition to aid the age prediction of a face by exploiting the age information available
from other faces. It goes further to explore the statistical relationships between facial features within age
groups to compute age-group ranks for a given face. The resulting age-group rank is low-dimensional and
age-discriminatory, thus improving age prediction accuracy when fed into an age predictor. Experiments
on publicly available facial ageing datasets (FGnet, PAL, and Adience) reveal the effectiveness of the
proposed age-group ranking model when used with traditional Machine learning algorithms as well
as Deep Learning algorithms. Cross-dataset validation, a method of training and testing on entirely
different datasets, was also employed to further investigate the effectiveness of this method.

Keywords: age estimation, age-group ranking, cross-dataset validation, dimensionality reduction, face
processing, facial features.

1. Introduction

Ageing is a spontaneous and irreversible process of human life. This spontaneous and
irreversible nature makes the ageing process non-linear and therefore difficult to predict.
Thus, judging human age via facial appearance or other physical evaluations is difficult.
Humans develop an innate ability, early in life to predict age to a reasonable degree of
accuracy [18,20], but this task still seems difficult for computers. The task of predicting
or determining the age of an individual, given his/her facial image, is referred to in the
Computer Vision and Image Processing research community as age estimation or age
prediction. Automated age estimation has proven to have many interesting applications
in security and surveillance, age-specific human-computer interaction, preventing age
falsification, age-specific advertising etc. [2, 18].

Despite the success of deep learning for facial age estimation, the bulk of features are
mostly learned directly from individual images without considering feature correlations
across other images, especially with respect to the ages of those other images. This limits
the relevance of learned features to the required discriminatory factor of ageing.

In this work, an age-group ranking approach is proposed, which exploits the relation-
ships between faces across several age groups to enrich the extracted facial features for
age estimation. The intuition behind this method is the observation that humans esti-
mate ages by instinctively making comparisons between a given face with an unknown
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age and other faces whose ages are known. This process is usually implicit and very fast
with humans and it happens almost unconsciously. However, this process is influenced
by the amount of exposure or experience of the person trying to estimate the age of an-
other person. It could also involve scanning through faces in certain known age groups
and trying to fix the questioned face in one of those age groups. Although it is difficult
to completely model this process in a machine, we take intuition from this to develop
an age group ranking model through which a questioned face is passed, compared with
several age groups, and ranked accordingly. The resulting age-group rank is then used
to embellish facial features to enhance the age-learning and prediction processes. The
idea is to develop a model for extracting facial features that are age-discriminatory yet
low-dimensional such that they can be used to predict ages from input face images. Ex-
periments were performed on three publicly available facial ageing datasets FGnet [12],
PAL [32] and Adience [17,22] and a new dataset, FAGE, and the results obtained com-
pete significantly with the state-of-the-art facial age estimation methods.

The specific contributions of this work include:
1. An age-group ranking model that produces age-discriminatory yet low-dimensional

facial features from learned correlations between faces and age groups.
2. Deviation of Feature Values (DoFV) which allows age group ranks to be computed

without requiring training or prior knowledge of the age of an input image.
3. An indigenous dataset (FAGE) of age-labelled facial images.
4. Cross-dataset validation to demonstrate the generalisation of the age-group ranking

model.
The rest of the paper is organized as follows: Section 2 discusses related previous

works in the field of facial age estimation, Section 4 discusses the methodology, Section 5
presents the experiments, results and discussion and Section 6 concludes the paper.

2. Related previous works

2.1. Using direct facial features for age estimation

One of the earliest works on facial age estimation was the work of Kwon and Lobo [24]
which used face anthropometry and face wrinkles to describe the face and reported 100%
accuracy on a set of 47 high-resolution face images classified as ‘Babies’, ‘Young Adults’
or ‘Seniors’. Research has since continued to produce several methods for improving facial
age estimation using different face descriptors, different age representation methods, and
various machine learning algorithms.

In [25], the Active Appearance Model (AAM) was used to represent the face and
Principal Component Analysis (PCA) was used to obtain the deviation of each face
from the mean AAM face model. In [19], an ageing pattern subspace learning model was
proposed for facial age estimation. The authors defined an ageing pattern as a sequence
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of personal face images sorted by time. Guo et al. [21] used Biologically Inspired Fea-
tures (BIF) together with manifold learning techniques to estimate ages using Support
Vector Machine (SVM) for age classification and Support Vector Regression (SVR) for
age regression. Most of these methods, except for [19], directly used facial features of
individuals for age classification or regression without considering possible relationships
between faces with respect to age.

2.2. Using age ranking for age estimation

Some works have employed age ranking in various ways. In [8], the authors proposed
a ranking approach to age estimation based on the intuition that humans estimate the
age of an unknown individual by comparing his/her face to the faces of other individuals
whose ages are known, thus resulting in a series of pairwise comparisons across a set
of individuals with known ages. Based on this intuition, they proposed an age ranking
model which results in binary classification-based comparisons. They used an ordinal
ranking algorithm to reduce the ordinal ranking problem to a binary classification prob-
lem. [9] also proposed an age estimation algorithm that employed the relative order of
ages as well as the classification costs. They maintained ordinal hyperplanes which sep-
arated all images into two groups based on the relative order of their age labels and
used the cost of classification to find the best-separating hyperplane. In [3], an ethnic-
specific age group ranking method was proposed for age estimation. In [7], age ranks
were predicted based on a cost-sensitive hyperplane ranking algorithm, facial features
were represented in low-dimensional space by a scattering transform so that exact ages
are then predicted via category-wise age ranks. In [49], a deep learning model was used
to rank faces and to estimate ages from faces. Ranking-CNN was proposed in [10] as a
series of basic CNNs with binary outputs which were aggregated to obtain a final age
label. Their experiments were conducted by pretraining their basic CNNs on Adience
dataset [17] and then fine-tuning and validating it on the MORPH dataset with the best
MAE of 2.96 years. While that work employed the ordinal age ranking between face
pairs, ours employs ordinal relationships between each face and groups of faces in each
age group.

2.3. Using deep learning for age estimation

More recently, deep learning models such as Convolutional Neural Networks (CNN) have
been used to determine age from faces. [49] used a Scattering Network (a CNN variant) to
develop a deep ranking model from age estimation. [35] used CNN with mean-variance
and softmax losses to estimate ages from faces. [15] used CNN in a transfer learning
setting to predict apparent as well as biological ages. [48] used CNN to learn the ordinal
nature of ages for age estimation. In [47], a group-n age encoding was proposed, a
CNN with multiple classifiers was used to learn the several age groups and a Local Age
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Decoder was used to predict the exact ages. As accurate as deep learning models can be,
they are computationally demanding and often require large amounts of training data.

3. Problem and motivation

Despite the impressive performance of many of these deep learning models, we observed
that most of them failed to model the correlation of facial features with age groups as
well as the inter-age groups’ relationships. This is difficult for many of these models
because deep learning architectures learn their features directly from inputs. Those
which attempted to capture this relationship to an extent (e.g. [10,47,48]) still failed to
capture the inter-age group relationships as it concerns facial features.

Also, most age ranking works conducted pairwise comparisons between faces leading
to a large set of pairwise comparisons. Although DeepRank [49] does not rely on pairwise
ranks, it infers its ranks from single images which still limits the possibility of capturing
the correlation of faces within a larger set such as an age group. Secondly, most age-
ranking works employed some form of learning to perform the age-ranking on faces. We
also observed that in many cases, a reference image set was maintained for age ranking
which is a subset of the training set and thus limits the amount of information available
for age ranking. In [10], the age ranks were learned by several basic deep-learning
networks, the results of which were aggregated to obtain a final age estimate. Considering
the computational demand of deep networks, this could even be very expensive.

In this work, we propose an age-group ranking model which ranks face images by
comparing an input image with every image in an entire training set and, in an attempt
to represent age-group-specific features, derives an age group rank that is representative
of each age group. Thus, each input image is ranked with respect to every image in
a training set as well as with every age group in the training set. This provides a
representation of the correlation of input images with every image in the training set as
well as with every age group represented in the training set. Also, instead of learning and
predicting age group ranks, we derived the deviation of feature values (DoFV) between
compared faces and performed basic statistical computations on these values with respect
to age groups, thus reducing the computational overhead that could have been incurred
due to learning age ranks prior to learning exact ages.

4. Methodology

When a human is asked to estimate the age of a given facial image, several operations
come into play in the mind. Apart from the fact that humans possess an innate ability
to recognize age from the face, people generally tend to estimate age by comparing the
given face to some other faces whose ages are known. This comparison is part of the
innate ability and it is usually very fast and without prior thought or preparation. Thus,
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a person’s ability to correctly estimate age can be considerably impacted by his/her own
age vis-a-vis his/her life experience [20,38]. The more exposed and experienced a person
is, the better is his/her age prediction ability. Thus, the age prediction ability of an
adult is expected to be better than that of a child because of experience and the extent
of development. In developing the proposed age-group ranking model, we leveraged this
intuition.

Since a person’s age estimation ability is impacted by his/her age and life experience,
then the age ranking model can be enriched with more experience by providing more
reference images for age ranking. Thus, our proposed age group ranking model employs
its entire training image set in a leave-one-out fashion to rank images by their age
groups. By using the leave-one-out method it is assured that no face image is ranked
by comparison with itself. This is justifiable by the fact that the face whose age is in
question should be compared with faces whose ages are known and not with itself, since
its age is still unknown. Also, people within an age group tend to exhibit similar ageing
features, thus making it easier to rank images by age groups than by exact ages. In fact,
the sparse nature of ages in most facial ageing datasets makes it almost impossible to
obtain enough images for each exact age rank. Also, unlike most other works, our age
group ranking model does not learn age group ranks; rather, it obtains the deviation
of feature values (DoFV) from compared faces and obtains the means and standard
deviations of these deviation values within age groups which are then used to compute
age group ranks for an input image.

However, there is still the challenge that, since the age of the face image in question
is not known, it is difficult to decide which age group the image should be compared with
in order to obtain an age group rank. To overcome this, the age group ranking model
performs an exhaustive comparison of the questioned face with every face in every age
group (in a dataset) so that the face is enriched with a representation of its correlation
across various age groups. Consequently, the correlation of an input face with its actual
age group is also learned from its comparison with several face images in that age group.

4.1. The age learning problem formulation

In this work, age estimation is modelled primarily as a regression problem. Thus, suppose
we have a set A of face images and a set B of age labels ordered by the magnitude of
the age values, the sets A and B can be represented as follows:

A = {ai|i = 1, . . . , p} , (1)
B = {bj |j = 0, · · · , q ∧ ∀j, bj+1 > bj} , (2)

where ai is face image, bj is an age value, p is the number of face images and q is the
highest age value. The expression ∀j, bj+1 > bj indicates that B is an ordered set, i.e.,
every age value is greater than the previous age value in the set, since age values are
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Fig. 1. The age-group ranking model.

ordered in time sequence. This ordering is necessary for age group ranking as we will
see in subsection 4.2. Thus, the task of age estimation involves approximating an age
learning function, say f1, which appropriately maps each facial image in A to its age
value in B, according to

f1(ai) = bj , (3)

where ai ∈ A and bj ∈ B.

4.2. The age-group ranking model

While age learning explores the relationship between face images and ages, age group
ranking explores the relationships between each face image and other images in various
age groups. Fig. 1 is a graphical illustration of how the AGR model ranks an input face
by an age-group-ordered training set to derive different age group rank-types.

Following the definitions of the sets A and B above, we define a third set C of age
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groups, according to

C = {cλ|λ = 1, · · · , w ∧ ∀λ, cλ+1 > cλ} , (4)

where cλ is an age group label and w is the number of age group labels.
Precisely, each cλ ∈ C is a subset of B. Thus each element of the set C of age groups

is itself a set (of age values) contained in the set B and the sets cλ are disjoint.
Further, the number of age groups in C is definitely less than the number of ages in

B, that is 1 < w < q.
The elements of each cλ is determined from B by a range parameter, τ . Thus, we

write cτ
λ ⊂ B.

Due to the nature of ageing and the challenge of insufficient data collection for its
studies, the range parameter τ could be the same throughout the set C or may change
for every cλ ∈ C. This is necessary to ensure that the number of faces available to
be mapped to each age group is relatively sizeable. However, as observed in (4), the
ordering of B is retained in C as well. In our experiments, the value of τ was empirically
determined based on the size of the dataset and the age distribution. This is necessary
to ensure that the number of face images and their ages in each age group are sufficient
for ranking a face, otherwise, we risk underrepresenting an age group.

Having defined the age learning function f1 in (3), we further define an age group
matching function h which maps faces to age groups, given the age of the face as follows:

h(ai, bj) = cτ
λ , (5)

so that
∀ai∃bj , such that f(ai) = bj , (6)

and
∀ai∃bj , cλ , such that h(ai, bj) = cτ

λ
. (7)

While the age learning function has to be approximated (by training), the age group
matching function simply associates a face (given its age) to its appropriate age group,
thus it requires no approximation or training. However, the age group matching function
only applies to training images or images whose ages are known and these are the images
that make up the reference image set for comparison during age group ranking. As earlier
stated, images to which an input image will be compared during age group ranking should
be images whose ages or age groups are known, we, therefore, used all training images as
the reference image set. The next challenge, however, is how to determine the age group
to which an input (test) image belongs and this is where an age group ranking function
steps in. It is noteworthy to state, therefore, that while the age group matching function
simply assigns a face to an age group given the exact age of the face, the age group
ranking function is responsible for capturing and representing the correlation of each
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face with each age group. So, the age group matching function requires prior knowledge
of the age of a given face so that it can construct the training set as a reference image
set organized into age groups, but the age group ranking function requires no prior
knowledge of the age of an input face.

Rather than approximating the age group ranking function by training, the function
is realized by computing some arithmetic and statistical measures to represent the cor-
relation of each face with each age group. Since the age group of the input (test) image
is supposedly unknown, by collecting such measures for all age groups, we are able to
capture the correlation of a face with various age groups. This further embellishes each
face with relevant information for learning the discriminatory properties of faces in terms
of their ages and age groups and reduces the overhead that could have been incurred by
learning the age group ranks. The result of this operation is a multivariate age group
rank for each face image representing its correlation with every age group.

Given the set A of face images and the set C of age groups as earlier defined, we
define a tuple A⃗ of sets of faces ordered by age groups as follows:

A⃗ =
(

Â1, Â2, . . . , Âw

)
, (8)

and
Âλ = {aλ1 , aλ2 , ..., aλg } . (9)

Each Âλ, (1 ≤ λ ≤ w), is a set of face images matched to the age group cλ, w is the
number of age groups as indicated in equation (5), each aλj

, (1 ≤ j ≤ g) is a face image
in the set Âλ and g is the number of face images in a particular age group. Since Âλ is a
set, it means the face images in it are not necessarily ordered by age, but are definitely
matched to the age group cλ.

Given a face image ai and a tuple A⃗ of faces ordered by their age groups, the age
group ranking function f2, which assigns an age group rank to image ai to obtain an
age-group-ranked face âi, is defined as follows:

f2(ai, A⃗) = âi . (10)

At this point, each face image ai has been transformed into a vector Xi of facial
features; therefore, the age group rank r̂i of each face ai is a vector obtained by computing
the Deviation of Feature Values (DoFV) between each face and every face in the tuple
A⃗ of age grouped faces. The several operations abstracted in f2() are detailed in the
following formulations.

Given a face ai, with unknown age and age group, the age group rank r̂i of ai is
obtained as follows:

ς(ai, aλj ) = ∆iλj , (11)
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Fig. 2. DoFV computation.

where ς is the DoFV function, aλj
is the jth face in the set Âλ of age-grouped faces and

∆iλj
is the obtained DoFV. DoFV is obtained by taking the absolute difference in feature

values between an input image ai whose age is unknown and an age grouped image aλj

whose age/age group is known. Then, for each age group, arithmetic and statistical
measures of the differences in feature values are obtained for this particular input image
and this provides the age group rank for the image at this particular age group. For
each input image, this is repeated for all age groups and a vector of ranks is obtained for
that input image, by concatenating the arithmetic and statistical measures of the DoFV
obtained from all age groups. Therefore, the age group rank contains information about
the statistical properties of images at feature, image, and age-group levels. Consequently,
the age group rank obtained for each input image corresponds to the correlation of the
feature values of the input image with the feature values of the various images in that
age group. Hence, the obtained age group rank is actually a measure of the correlation of
an input image with images of all age groups. With this information, the age learner (at
training) can learn the correlation of each face with every age group, thus being able to
better fit faces to their respective ages. Fig. 2 shows the DoFV computation procedure
as explained above.

Suppose the facial features of a face image ai is collected into the vector Xi of size n
and each feature value in the vector Xi is indexed by t, (1 ≤ t ≤ n), then the following
formulations can be stated for DoFV for a given face ai as follows:

∆t = |Xit − Xλjt
| , (12)

∆t being the DoFV for the tth feature in the facial feature vector Xi, obtained as the
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absolute difference between the tth feature vector in the input face and the tth feature
vector in the jth face of the age group Âλ.

Then, for each face feature vector Xi (1 ≤ i ≤ p; p being the number of face images),
two arithmetic and statistical measures of the DoFV are taken, namely the arithmetic
mean and the standard deviation denoted as ∆µ

iλj
and ∆σ

iλj
, respectively.

Subsequently, for each age group, four arithmetic and statistical measures are ob-
tained as mean of means (∆µµ

iλ ), mean of standard deviations (∆µσ
iλ ), standard deviation

of means (∆σµ
iλ ) and standard deviation of standard deviations (∆σσ

iλ ), as shown in equa-
tions (13) to (16), respectively.

∆µµ
iλ =

g∑
j=1

∆µ
iλj

g
(13)

∆µσ
iλ =

g∑
j=1

∆σ
iλj

g
(14)

∆σµ
iλ =

√√√√√ g∑
j=1

(∆µ
iλj

− ∆µ+
iλ )2

g − 1 (15)

∆σσ
iλ =

√√√√√ g∑
j=1

(∆σ
iλj

− ∆µ+
iλ )2

g − 1 (16)

For every face image ai, these four values are obtained for each age group resulting
in 4×w values (w being the number of age groups), since the age/age group of the query
face is supposedly unknown.

The age group rank r̂i is obtained by performing arithmetic multiplication and di-
vision operations between these four values in eight different ways. These eight values
are computed for each age group, giving a maximum of 8 × w (w being the number of
age groups) values making up the age group rank of each image. The selected eight
values, called rank-types, are computed as ϖiλ1 = ∆µµ

iλ × ∆σµ
iλ ; ϖiλ2 = ∆µσ

iλ × ∆σσ
iλ ;

ϖiλ3 = ∆µµ
iλ /∆σµ

iλ ; ϖiλ4 = ∆µσ
iλ /∆σσ

iλ ; ϖiλ5 = ∆µµ
iλ × ∆µσ

iλ ; ϖiλ6 = ∆σµ
iλ × ∆σσ

iλ ; ϖiλ7

= ∆µµ
iλ /∆µσ

iλ and ϖiλ8 = ∆σµ
iλ /∆σσ

iλ , where ϖiλ1 , ϖiλ2 , ..., ϖiλ8 are the eight rank-types.
For space constraints, we leave out the equations for these ranks as they can be easily
deduced from equations (13)-(16).

Consequently, the rank r̂i (1 ≤ i ≤ p; p being the number of face images) of each
image is made up by concatenating the obtained rank values of all the age groups for
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each rank type, as follows:

r̃ik = ϖi1k
⊕ ϖi2k

⊕ . . . ϖiwk
, (17)

where ϖi1k
, ϖi2k

, ..., ϖiwk
are the values for rank-type k (1 ≤ k ≤ 8) for each of the w

age groups and r̃ik is the resulting vector for rank-type k for all age groups. Finally, the
rank r̂i of an image ai for all rank types is given as

r̂i = r̃i1 ⊕ r̃i2 ⊕ ... ⊕ r̃it , (18)

where t is the number of different rank-types and in this case, t = 8. Eventually, the age
group rank obtained for a face image ai is concatenated with the facial features of ai to
obtain an age-group-ranked face image âi as stated in equation (17). Thus, we can write

X̂i = Xi ⊕ r̂i , (19)

where X̂i is the age-group-ranked feature vector of the age-group-ranked face âi. Equa-
tion (3) can therefore be rewritten as in equation (20) so that a learning algorithm can
then approximate this function:

f1(X̂i) = bj . (20)

The effect of this is that the learning algorithm has more age-relevant facial features
to learn from in approximating this function and thereby estimating the exact age of a
given face. Details of the learning algorithms are given in the next section.

Summarily, the entire process described produces enhanced features (low-dimensional
and discriminatory) that can be supplied as input to a learning algorithm to predict the
exact age of a given face. Links to the dataset and source code will be made available
after acceptance.

5. Experiments, Results, and Discussions

5.1. Experimental Settings

Our age group ranking (AGR) model was implemented in MATLAB R2016a. We
used Local Binary Patterns (LBP) [34], raw image pixel features and deep features
(VGG16 [45], Inception-V3 [46], Xception [11] and VGGFace [36]) as face descriptors
and used Support Vector Regression (SVR) with Radial Basis Function (RBF) kernel (to
capture the non-linearity of face ageing) for age learning. Experiments were performed
on four different facial ageing datasets, namely FGnet [12], which contains 1002 images
of 82 individuals, PAL [32], with 1046 images of 575 individuals and a new dataset,
FAGE (Facial expression, Age, Gender and Ethnicity) with 540 images of 328 individ-
uals, and Adience [17]. For Adience dataset, the age labels are not exact ages but age
groups, therefore in place of SVR, we used the Discriminant Analysis classifier with a
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quadratic kernel, henceforth referred to as Quadratic Discriminant Analysis (QDA), for
age group learning. For SVR, the age learning optimization algorithm used was Sequen-
tial Minimal Optimization. The estimated Lagrange multipliers for the support vectors
as well as the optimization coefficients were initialized to zero and training was done for
1000 iterations. For QDA, the misclassification cost was a square matrix whose values
were derived from the distance between the age classes and the prior probabilities were
empirically determined from the frequencies of the age classes.

Although our model was originally formulated for regression, in the case of Adience
dataset, the model is adapted to classification by using the supplied age groups both for
age group ranking and as the responses to be learned in age classification, so Adience
does not require the age group matching function of equation (5). As will be seen in
Tab. 1, the age groups in Adience are already too wide and too few (only eight of them),
so merging two or three age groups into one will only increase the age gap and reduce
the number of age groups available for age group ranking. As will be seen in the results,
this limitation affected the result of age group ranking on Adience dataset.

Our choice of these datasets is because they are publicly available and have long-
standing usage in age estimation research. FAGE was collected for this research, specifi-
cally to investigate age estimation on indigenous African faces (a problem rarely studied).
To investigate the generalization ability of the trained models, we also performed cross-
dataset validation (which is rarely done because of the peculiarities of each dataset)
between three of the four datasets studied (Adience was excluded as it does not include
exact ages).

For training and validation on FGnet, we adopted the popular subject-exclusive
Leave-One-Person-Out (LOPO) cross-validation protocol as described in [19]. For PAL
and FAGE datasets, we used 5-fold cross-validation and for Adience, we used the subject-
exclusive 5-fold cross-validation as suggested in [17]. The evaluation metrics that have
become standards for age estimation are Mean Absolute Error (MAE) and Cumulative
Score (CS). MAE is the average of the absolute difference between the actual and pre-
dicted ages while CS is the percentage of the dataset whose ages are correctly predicted
at a given error level. However, for Adience, the recommended and popular evaluation
metric is the percentage classification accuracy (ACC) and is usually divided into exact
accuracy and 1-off accuracy (taking as correct, predictions off by one age group). Thus,
with MAE, the lower the value, the better the performance, while with ACC and CS,
the higher the value, the better the performance.

Each dataset was split into age groups such that each age group spanned about five
years (i. e. τ ≈ 5) except in cases where there were not enough images to represent an
age group. For Adience, we simply used the age group classes that came with the dataset
as the age groups for ranking. Tab. 1 shows the division of the age groups within each
of the four datasets. Age group ranking was thus performed on each dataset using these
age group divisions, thus resulting in 11, 12, 10, and 8 age group ranks for FGnet, PAL,
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Tab. 1. Datasets divisions by age group.

Adience Dataset FAGE Dataset FGnet Dataset PAL Dataset
Age group # faces Age group # faces Age group # faces Age group # faces

0 – 2 2509 0 – 5 44 0 – 4 194 18 – 20 116
4 – 6 2140 6 – 10 97 5 – 8 153 21 – 25 274
8 – 13 2292 11 – 15 66 9 – 12 135 26 – 30 86
15 – 23 1887 16 – y20 71 13 – 16 130 31 – 35 44
25 – 36 5549 21 – 25 142 17 – 20 118 36 – 40 34
38 – 46 2429 26 – 30 63 21 – 24 64 41 – 45 38
48 – 58 937 31 – 35 27 25 – 28 51 46 – 50 34
60 – 100 872 36 – 40 10 29 – 32 38 51 – 55 40

– – 41 – 45 13 33 – 36 36 56 – 60 12
– – 46 – 80 7 37 – 40 23 61 – 70 162
– – – – 41 – 69 60 71 – 80 139
– – – – – – 81 – 93 67

Total 18615 Total 540 Total 1002 Total 1046

FAGE, and Adience datasets, respectively. For brevity, AGR refers to age group ranking
in all tables and figures where it appears.

A note on Adience dataset
According to [17], the Adience dataset is said to contain 26 580 images of 2 284 subjects.
However, the dataset downloadable from the authors’ website contains exactly 19 370
images (see Table I of [37]) out of which only 18 615 images are labelled with age groups.
This is further confirmed by our observation of the fact that the breakdown provided in
Table II in [17] does not in any way add up to 26 580 images. More so, we observed that
the age labels in the available dataset (from their website) are somewhat inconsistent with
what is provided in the paper. We worked around this to aggregate the scattered pieces of
age labels into coarse age groups and we eventually ended up with eight labels similar to
the ones indicated in [17], but some of our age groups covered wider ranges.

Face preprocessing and feature extraction
Each face image was preprocessed by converting it into an 8-bit grayscale image (if
coloured) resulting in pixel intensity values between 0 and 255. From the grayscale
image, the face was detected and aligned using a multi-stage method described in [4].
Before feature extraction, images were resized to various sizes depending on the feature
descriptor to be used. For LBP and raw image pixels features, images were resized to
120 × 100 pixels; for VGG16 and VGGFace features, images were resized to 224 × 224
pixels; for Inception-V3 and Xception, images were resized to 299 × 299 pixels. For raw
pixels and LBP features, feature histograms were obtained from ten (10) face regions
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defined around the forehead, the outer eye corners, the inner eye corners, the area under
the eyes, the area between the two eyes, the nose bridge, the nose lines, the cheek
area, the cheekbone areas, and the periocular face region. Features histograms from
each defined face region were aggregated and compacted using the method in [5]. We
selected compaction ranges of 5 and 10 for raw pixels and LBP, respectively. For LBP
features, LBP8,1 (8-pixel neighbourhood and pixel distance/radius of 1) was used. The
resulting features from each descriptor were then used to rank each face as described in
the previous section and to obtain age group ranks for each face for all age groups. The
resulting age group ranks were passed into SVR/QDA for age/age-group learning and
prediction. We then carried out comparative analyses of the performance of age group
ranking on each dataset and each feature descriptor.

5.2. Dataset-specific results

To investigate the impact of our AGR model, we trained SVR/QDA on:
1. the entire features vector before age group ranking (high-dimensional features);
2. the entire features along with the age group ranks (high-dimensional features);
3. the age group ranks alone (low-dimensional features).

Each feature type (before and after age group ranking), was normalized by scaling
the feature values to a narrow interval (0, 1) using the standard deviation and means of
the feature values. The MAEs obtained in each case are reported in Tab. 2. The value
of x in Tab. 2 refers to the number of rank-types multiplied by the number of age groups
in each dataset. So, from Tab. 1 and Tab. 2, it can be inferred that x = 64, 80, 88, and
96 for Adience, FAGE, FGnet, and PAL datasets respectively. From Tab. 2, it is obvious
that the age group ranks significantly reduced the age estimation error in all cases even
though it provides significantly low-dimensional features for age learning.

We further investigated the performance of each of the eight (8) rank-types for age
estimation and reported the results in Tab. 3. From Tab. 3, it can be observed that rank-
types 3, 4, and 6 generally gave the lowest MAE (values in boldface). For all raw pixel
features, rank-types 4 and 6 seem to give the best performance, except on PAL dataset
where rank-type 8 performed better than the two and that was the only instance where
rank-type 8 performed the best in the entire experiment. For LBP features, rank-types 3
and 6 gave the best performances. For both VGG16 and VGGFace features, rank-types
4 and 6 were the best. For Inception and Xception features, rank-types 3 and 6 were
the best; in fact, with Xception, rank-type 3 consistently outperformed rank-type 6 on
all datasets. On Adience dataset, the best performing rank-types are rank-types 3 and
6; on FAGE dataset, the best performing is rank-type 6; on FGnet dataset, the best
performing are rank-types 3, 4, and 6, but predominantly 4; while on PAL dataset, the
best performing are rank-types 3, 4, 6 and 8 (but the good performance of rank-type 8
is more like an outlier in the entire set of experiments).
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Tab. 2. MAE of age estimation results before and after age group ranking. Ftr. stands for feature(s)
and dim. stands for dimensionality.

ACC [%] MAE (years)
Experiment setting Ftr. type Ftr. dim. Adience FAGE FGnet PAL
Before AGR Raw pixel 520 (31.30, 56.79) 7.02 8.43 14.44
(features only) LBP 260 (29.59, 58.09) 6.56 8.36 12.32

VGG-16 4096 (19.06, 52.12) 6.25 6.94 10.39
VGGFace 2622 (18.89, 43.31) 5.18 4.65 5.07
Incep-V3 2048 (22.67, 41.97) 6.49 6.14 12.34
Xception 2048 (19.82, 36.51) 6.97 6.78 11.96

After AGR Raw pixel 520+x (36.93, 59.93) 6.72 8.36 13.23
(features + ranks) LBP 260+x (43.83, 64.54) 4.29 4.99 7.29

VGG-16 4096+x (19.25, 52.18) 6.10 6.77 10.19
VGGFace 2622+x (18.71, 42.52) 5.05 4.52 5.00
Incep-V3 2048+x (25.06, 45.72) 6.44 5.83 12.05
Xception 2048+x (17.93, 33.83) 6.95 6.26 11.68

After AGR Raw pixel x (60.24, 71.70) 6.22 7.27 12.44
(ranks only) LBP x (61.75, 75.48) 3.11 2.98 5.17

VGG-16 x (53.02, 74.94) 3.55 3.51 6.36
VGGFace x (67.90, 90.28) 3.71 2.84 4.52
Incep-V3 x (52.47, 75.38) 6.70 3.25 13.37
Xception x (52.68, 75.26) 6.88 3.43 11.60

This is significant as it shows that we can even lower age estimation error by using
just one of the rank-types, thereby dropping the dimension of features needed for age
learning from x to x/8; meaning just 8 feature dimension for Adience, 10 for FAGE,
11 for FGnet and 12 for PAL datasets. One observable similarity in the computation
of these three best-performing rank-types is the fact that they all involve either the
standard deviation of means (σµ) or the mean of standard deviations (µσ) as described
in Subsection 4.2. This shows that the combination of statistical and arithmetic measures
of the facial features properly captured the relationship between facial features within
and across age groups in low dimensions.

As expected, the performance of these rank-types on Adience is still relatively poor.
This is due to the few age groups vis-a-vis the dataset size – there are only 8 age groups
for ranking over 18 000 images. For this reason, we investigated the combination of
the different best-performing rank-types as well as the best-performing feature types on
Adience and reported the results in Tab. 4. Interestingly, with the proper combinations
of rank-types as well as feature types, the performance improves significantly and the
best result was obtained with the combination of rank-types 3 and 6 on the combination
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Tab. 3. MAE of age estimation with each rank-type (rt). Only exact ACC is shown for Adience.

Ftr. type ACC [%] MAE (years)
rt 1 to 8 Adience FAGE FGnet PAL
Raw pixel 48.79, 52.64, 53.58, 5.43, 6.17, 4.52, 6.68, 7.05, 5.51, 13.61, 15.07, 13.45,

55.63, 28.69, 62.35, 4.71, 6.11, 4.23, 4.93, 7.42, 5.02, 13.35, 10.44, 11.77,
26.56, 33.45 7.15, 6.64 9.25, 8.25 13.3, 9.84

LBP 51.34, 30.69, 57.05, 1.93, 2.98, 2.40, 1.88, 3.35, 2.17, 4.21, 7.92, 3.53,
36.47, 28.95, 49.70, 3.18, 4.74, 1.71, 3.27, 7.63, 1.79, 7.05, 10.14, 3.29,
24.58, 34.77 7.21, 4.88 9.61, 5.44 12.99, 8.09

VGG16 38.13, 43.11, 45.72, 3.13, 2.21, 2.91, 5.32, 3.71, 3.30, 9.57, 7.22, 5.72,
48.77, 36.43, 46.38, 2.57, 5.02, 2.10, 2.55, 5.61, 2.67, 5.10, 7.27, 5.71,
35.64, 38.80 6.78, 4.45 6.92, 5.85 11.11, 8.49

VGGFace 52.48, 54.41, 66.99, 3.22, 2.95, 3.14, 3.77, 3.41, 2.05, 6.27, 5.87, 4.27,
67.82, 58.04, 63.22, 3.01, 4.36, 2.20, 1.96, 3.74, 2.09, 3.99, 4.47, 4.40,
30.08, 31.82 7.10, 7.09 7.67, 6.86 11.84, 13.66

Incep-V3 42.30, 47.17, 47.02, 5.76, 6.42, 5.25, 4.29, 4.27, 2.44, 14.82, 14.30, 11.03,
45.12, 39.04, 49.65, 5.48, 5.97, 5.04, 2.61, 5.52, 2.76, 11.34, 12.93, 11.73,
35.41, 38.49 7.48, 6.36 7.74, 6.84 15.23, 14.26

Xception 36.41, 45.20, 46.62, 7.20, 6.95, 5.96, 5.02, 4.31, 2.84, 12.44, 11.95, 9.72,
45.14, 39.33, 46.61, 5.95, 6.62, 5.99, 2.84, 5.56, 3.37, 9.97, 10.65, 9.93,
36.36, 39.37 7.10, 7.00 7.80, 6.17 14.03, 13.53

of VGGFace, LBP, Raw Pixel, Inception, and Xception features. Fig. 3 shows sample
images from the four datasets for which age prediction with AGR succeeded and those
for which it failed using the best-performing features.

Tab. 5 shows some of the most recently reported state-of-the-art results on Adience,
FGnet, and PAL datasets (FAGE is a relatively new dataset, so there are no existing
methods on it to compare with). In the table, the asterisk (*) in the third column (ftrs.
dim.) refers to those in which the exact feature dimension was not explicitly reported in
the literature. However, it is common knowledge that most of the deep learning features
are in the order of thousands, while our method uses features in the order of tens. From
Tab. 5, it is seen that our method competes significantly with the best of these methods
achieving the lowest MAEs on FGnet (1.79 years) and PAL (3.29 years) and the best
exact accuracy (85.1%) on Adience; VLRIX stands for the combination of VGGFace,
LBP, Raw pixel, Inception and Xception features as seen in the third to the last row
of Tab. 4. We consider this a significant achievement considering the highly reduced
feature dimension generated by our AGR model and the fact that it achieves this even
with fairly simple feature extraction techniques (raw pixel and LBP), thus making our
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Tab. 4. Different combinations of rank-types and feature types on Adience dataset. Abbreviations:
I – Inception, L – LBP, R – Raw pixel, V – VGGFace, V16 – VGG16, X – Xception.

Rank-types Feature types Ftr. dim. ACC (%)
Exact± std. 1-off± std.

3, 4 All 96 83.7±2.10 93.2±1.07

3, 6 All 96 84.0±2.79 93.9±1.26

4, 6 All 96 82.1±2.91 93.1±1.54

3, 4, 6 All 144 83.7±2.56 93.6±1.22

3, 4 X, I 32 55.8±4.31 78.4±2.23

3, 6 X, I, L, R 64 79.4±2.12 89.5±1.18

4, 6 V16, V, L, R, I 80 83.2±2.88 93.4±1.34

4, 6 V16, V, L, R, X 80 83.4±3.02 93.6±1.47

3, 6 V16, V, L, R, X 80 84.8±3.11 94.2±1.21

3, 6 V16, V, L, R, I 80 84.5±2.88 94.0±1.38

3, 6 V, L, R, I, X 80 85.1±2.33 94.6±0.88

3, 4, 6 V, L, R 72 85.5±3.12 94.3±1.15

3, 4, 6 V, L, R, V16 96 84.6±2.99 93.7±1.39

results more easily reproducible. All these results had been achieved with features of
relatively low dimension – 80 on Adience, 11 on FGnet, and 12 on PAL.

CS often gives a better picture of the performance of an age estimation algorithm at
different levels of the prediction error. We plotted our CS scores along with some of the
best results on FGnet for which CS plots were reported and compared the results. Fig. 4
further confirms the significant improvement offered by our AGR model (AGR-LBP-r6
and AGR-VGGFace-r4) on FGnet. At an error level of 0, only EBIF [14] started ahead
of the AGR model and AGR overtook it at error level 1. AGR performs at par with
GEF up to error level 1 after which AGR significantly overtakes. Generally, from error
level 2 upwards, AGR outperforms all the compared methods and finishes far ahead of
them with CS of 95% at error level 5 and 99% at error level 10. Previous works on PAL
rarely report their CS scores so there will be no basis for such comparisons, thus we leave
out the CS curve on PAL. Also, because the FAGE dataset is new, there are no previous
results with which we can compare it.

5.3. Cross-Dataset Validation

To better study the generalization of our model, we performed cross-dataset validation
in two settings:
1. on FGnet and PAL datasets;
2. on FGnet, PAL, and FAGE datasets.
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Tab. 5. Comparison with previous results on Adience, FGnet and PAL. rt: rank-type. Note the 3rd
column: filters dimension.

filters dimension ACC [%] MAE (years)
Method Year (Adience, FGnet, PAL) Adience FGnet PAL

(Exact, 1-off)

EBIF [14] 2011 EBIF* – 3.17 –
W-RS [50] 2013 100–900 – – 5.99
Joint-Learn [6] 2014 LBP* – – 5.26
DeepRank [49] 2015 500 – – 4.31
GEF [30] 2015 LBP,BIF,HOG* – 2.81 –
CNN [26] 2015 CNN ftrs.* (50.7, 84.7) – –
DA [39] 2017 VGG-16 ftrs.* (60.0, 94.5) – –
DNN [41] 2017 VGG-16 ftrs.* (62.8, 95.8) – –
ODFL [28] 2017 CNN ftrs.* – 3.89 –
All-in-one [37] 2017 CNN ftrs.* – 2.00 –
DEX [40] 2018 VGG-16 ftrs.* (64.0, 96.6) 3.09 –
Group-n [47] 2018 VGG-16 ftrs.* – 2.96 –
DRF [42] 2018 VGG-16 ftrs.* – 3.85 –
CNN2ELM [16] 2018 CNN ftrs.* (66.49, –) – –
Joint-Learn [31] 2018 LBP(8,1) – – 5.26
MVL [35] 2018 CNN ftrs.* – 2.68 –
BridgeNet [27] 2019 CNN ftrs.* – 2.56 –
TransLearn [15] 2019 4096 VGG-16 ftrs. – – 3.79
SORD [13] 2019 VGG-16 ftrs.* (59.6, –) – –
ODL [29] 2019 VGGFace ftrs.* – 2.92 3.99
DDRF [43] 2019 VGG-16 ftrs.* – 3.47 –
C3AE [51] 2019 * – 2.95 –
DOEL [48] 2020 ResNet ftrs. * – 3.44 –
DLC [1] 2020 CNN ftrs.* (83.1, 93.8) – –
SR [33] 2020 CNN ftrs.* – – 8.33
DCN [23] 2022 VGG ftrs.* – 2.13 –
ABC+Swin [44] 2023 Transformer ftrs.* (56.1, –) 2.52 –
AGR-LBP (rt6) Ours [8, 11, 12] (49.7, 68.9) 1.79 3.29
AGR-VLRIX (rt3+rt6) Ours [80, –, –] (85.1, 94.6) – –
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Fig. 3. Sample images and their true/predicted ages. from the 1st to the last row: FAGE, FGnet, PAL
and Adience. Predicted ages are in parentheses.

In both settings, we used LBP (rank-type 6) and VGGFace (rank-type 4) features since
they were the two best-performing features. In the second setting, we trained and tested
the model on a combination of FGnet, PAL, and FAGE datasets. The Adience dataset
is not used for Cross-dataset validation because it does not contain exact ages and is
therefore unsuitable for a regression task as is the case with the other 3 datasets.

In setting 1, since both datasets cover separate age ranges, we selected the intersection
of the age ranges covered (i. e. 18-69 years) and selected all faces falling within this age
range. We found 362 FGnet images and 820 PAL images within this age range, making
1182 images altogether. We then ranked this new set of 1182 images on the entire set of
FGnet and referred to it as FG-ranked, we also ranked it on the entire set of PAL images
and referred to it as PAL-ranked. We trained and tested FG-ranked and PAL-ranked
datasets using 5-fold cross-validation and obtained MAEs of 8.86 and 6.27 years with
LBP features and 4.55 and 4.32 years with VGGFace features on FG-ranked and PAL-
ranked datasets, respectively. As expected, the MAEs are higher in the cross-dataset
environment, however, the result is worse when FGnet images are used to rank the data.
This is because FGnet has 44 images less than PAL and FGnet contains 7 missing ages,
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Fig. 4. CS curves of best-reported works on FGnet

while PAL contains only 1 missing age. PAL also covers a wider age range and contains
more images for its age groups than FGnet. This goes to show that with more images
available for age ranking and more ages represented within each age group, AGR offers
better performance.

In the second setting, because of the differences in the number of age groups in each
of the combined datasets, we created a new set of 15 age groups covering all the age
groups in all three datasets and ranked each image in the combined dataset on this.
There are a total of 2715 images in the combined dataset. We trained and tested with
5-fold cross-validation and obtained MAEs of 4.03 years and 4.33 years for VGGFace and
LBP, respectively. However, the increased error rate is attributed to the ethnic diversity
of the three datasets and the possibility that the age groups have become relatively too
much for the dataset size.

The improved performance of VGGFace over LBP is an indication of the expressive-
ness of deep features in more complicated settings such as cross-dataset validation and
with more data (as in setting 2). Generally speaking, the MAEs in both cross-dataset
validation settings did not soar beyond expectations despite the wide inter-dataset vari-
ations; this is a pointer to the robustness of the AGR model and the intuition of age
group ranking.
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6. Conclusion

In this work, an age group ranking approach for facial age estimation was developed.
The developed model uses the intuition that age can be better estimated from faces
when there is sufficient information about other faces in several different age groups to
rank a query face. The developed method was tested and validated on four datasets
(FAGE, FGnet, PAL, and Adience). Experiments were performed on these datasets
using standard protocols and the results compete significantly with the state-of-the-
art age estimation methods. We further investigated the generalization of the method
using cross-dataset validation and it turned out that the developed AGR method gives
relatively good performance even across different datasets. The intuition of age group
ranking developed here is superior to the existing age ranking methods in that age group
ranking ranks images by age group rather than by exact ages thus making more data
available for an image to be ranked. This is done without the need for prior knowledge
of a particular age group rank via learning as the age ranking model uses available
aging information from all age groups to rank a given face. More interestingly, the AGR
model does not depend extensively on deep learning models as in current works but still
competes significantly with deep-learning-based age estimation models. The findings
from this work show that despite the impressive results of deep learning in recent times,
the impact of age group ranking on face-based age estimation is indeed significant and
should not be discarded. This work has also shown that age estimation via age-group
ranking is more intuitive and gives better performance than direct age estimation from
a single face.

The major limitation of the AGR model is that it does not fit directly into a deep
learning architecture as it requires features to be extracted and enhanced before it is
been passed to a classifier/regressor. However, the AGR model works when on simple
features such as raw pixels as well as deep features as the features are further enriched
with age group information before they are passed into a classifier/regressor.

Future works could consider building deep learning models that can explore the
relationship between faces in terms of their age groups while estimating the age of a
given face image. Future works could also consider using more rank-types and different
age groupings to understand the impact of the number of age groups vis-a-vis the age
range and the number of images within each age group. Considering the impact of the
statistical measures of variation used in DoFV, there is a need to explore more statistical
measures that could improve age estimation accuracy.
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Abstract Plant disease classification using machine learning in a real agricultural field environment
is a difficult task. Often, an automated plant disease diagnosis method might fail to capture and
interpret discriminatory information due to small variations among leaf sub-categories. Yet, modern
Convolutional Neural Networks (CNNs) have achieved decent success in discriminating various plant
diseases using leave images. A few existing methods have applied additional pre-processing modules
or sub-networks to tackle this challenge. Sometimes, the feature maps ignore partial information for
holistic description by part-mining. A deep CNN that emphasizes integration of partial descriptiveness
of leaf regions is proposed in this work. The efficacious attention mechanism is integrated with high-
level feature map of a base CNN for enhancing feature representation. The proposed method focuses
on important diseased areas in leaves, and employs an attention weighting scheme for utilizing use-
ful neighborhood information. The proposed Attention-based network for Plant Disease Classification
(APDC) method has achieved state-of-the-art performances on four public plant datasets containing
visual/thermal images. The best top-1 accuracies attained by the proposed APDC are: PlantPathology
97.74%, PaddyCrop 99.62%, PaddyDoctor 99.65%, and PlantVillage 99.97%. These results justify the
suitability of proposed method.

Keywords: agriculture, attention, Convolutional Neural Networks, CNNs, Deep Learning, plant disease
classification.

1. Introduction

Modernization in agriculture is reckoned as an emerging research area. Decent growth
has been achieved over conventional engineering and laborious farming technologies using
artificial intelligence and machine learning [29, 32]. A myriad of diversified applications
of computer vision, in conjunction with the plethora of machine learning (ML) tech-
niques, are playing important roles in agricultural development and in supporting the
sustainability. Still, agriculture needs to be improved further to meet growing global food
demands as envisaged by scientists. Several key challenges are identified in allied areas of
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agriculture and related futuristic aspects, which seek more research attention, e.g., early
disease prediction, crop yield estimation, crop health monitoring, and others [13,34].

Automated plant disease prediction from leaf images using computer vision tech-
niques is difficult due to wider variations in visual symptoms [40, 43]. In general, the
images of various plants and crops are collected by the users/farmers and pre-processed
with image processing techniques, such as noise removal, leaf-area detection, area of in-
terest localization, edge map extraction, scaling, contrast adjustment, and others [27].
Several existing methods have applied pre-processing techniques for image segmentation,
especially, segmented the region of interests (RoIs) representing infected regions/spots
within the leaves, mask generation, and others [30]. Hence, these conventional pipelines
essentially require a well-defined set of tasks to be accomplished before the feature ex-
traction. To alleviate this, many deep learning methods have used actual images of plants
and defined a deep network by integrating several sub-modules, such as generative ad-
versarial networks (GAN) for augmentation [11] or U-Net for segmentation [41]. Some
works have devised deep convolutional neural networks (CNNs) [10]. Also, lightweight
CNNs have been studied for corn disease prediction and other applications due to lesser
parametric complexities [13].

In recent years, attention mechanism plays as an indispensable component of modern
deep architectures due its superior performance in solving diverse challenges in natural
language processing, computer vision, and others [5, 7, 8, 46]. An attention method is
effective for crop disease classification too [28]. Its aptness is witnessed for plant disease
classification using self-attention [60]. Several prior works have used additional offline
pre-processing, GAN-based augmentation, and additional sub-networks for localizing
the infected leaf regions, as said above. Also, some methods are developed by transfer
learning and ensemble techniques. Often, these existing techniques might overlook part
and region based local information for subtle discrimination between infected similar
types of leaves. Other than a global feature map, local descriptors are very useful for
automated diagnosis and localizing finer details within a leaf. Because, various diseases
can infect similar leaves of the same plant category [13, 47]. For example, the same
tomato leaf can be infected by several diseases (e.g., mosaic, septoria, curl virus, etc.),
and the differences among various plant leaves are naturally subtle. Thus, an efficient
feature descriptor is crucial for discriminating and solving this problem.

The proposed Attention-based deep network for Plant Disease Classification (APDC)
approach can be divided into three phases, shown in Fig. 1. A high-level feature map
of an input leaf image is extracted using a backbone CNN in the first phase. The
output feature vector is upsampled to a higher resolution for pooling the features from
a set of fixed-size disjoint region proposals. These regions are spatially mapped with the
upsampled base CNN’s feature vector. Next, a bilinear pooling layer is applied to extract
the upsampled convolutional features from each region [6]. The output dimension of these
regions are kept the same as the output feature space of a base CNN. Overall, these
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Fig. 1. The proposed APDC framework is divided into three phases: (1) Deep feature extraction from
base CNNs and computing region proposals. (2) Attention-based weight computation for the
candidate regions across the channel dimension with a residual connection. (3) Regularization
of the learning task for plant disease classification using softmax activation.

region-based pooled feature maps are considered as the output of Phase 1. Then, intra-
attention is computed for emphasizing the importance of various regions and assigning
weights accordingly in Phase 2. The weighted attention score directs at accumulating
a precise feature description relevant to classification. A residual path is added as a
skip connection which is the output of a global average pooling layer applied to the base
CNN’s feature map. The added feature map combining the attention scores and skip path
defines an efficient feature vector representing the output of Phase 2. A regularization
technique is applied for handling the overfitting issues during the training of the proposed
network, followed by a softmax layer for classification in the third phase. Experimentally,
proposed APDC is found to be an effective and easy solution for leaf disease recognition.

The main contributions of this paper are summarized as:
• An attention-driven deep network integrating three key phases to emphasize the infor-

mativeness of complementary regions by weight assignment that represents an efficient
feature vector for plant disease recognition.

• The proposed method is end-to-end trainable avoiding additional pre-processing mod-
ule and bounding-box regression, implying a simple implementation.

• The proposed method has achieved state-of-the-art performance on four public data-
sets, representing visual and thermal leaf images of various plant classes.

• Rigorous experimental evaluation and ablation studies justify the importance of major
components of the proposed deep network.

The rest of this paper is organized as follows: related works are summarized in Section 2.
The proposed method is described in Section 3. The experimental results and ablation
studies are discussed in Section 4. The conclusion is given in Section 5.
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2. Related work

Various deep-learning techniques for plant disease detection and classification have been
developed [10,27,38]. Common crop leaves such as the potato, rice, tomato, corn, wheat,
etc., have been tested for solving disease identification [31]. A deep network consisting
of object detector YoloX and siamese network is described for classifying rice diseases in
RiceNet [33]. Multiple pest detection of orchard apples using improved faster R-CNN is
presented [15]. A modified GoogLeNet is used for rice disease detection [50]. MobInc-Net
is developed by combining MobileNet with the Inception module for disease recognition
of 12 rice categories [12]. A dual-stream hierarchical bilinear pooling (DHBP) method is
presented in [47]. Bacterial spot detection in the peach leaf images using Convolutional
Autoencoders (CAE) and CNN is presented [4]. Six disease classes (e.g., anthracnose,
etc.) of the maize crop is tested using NPNet-19 [31]. Pre-trained CNNs (e.g., Inception-
v3, etc.) are used for transfer learning to detect 12 types of abnormalities, including
huanglongbing of citrus [17].

A CNN is built with the Inception and residual architecture with a convolution block
attention module (CBAM) is described in [56]. The method is tested on the epidemi-
ological PlantVillage dataset [22], containing 54.3k images of 14 plant species. Fine-
grained classification of infected tomato leaves of the PlantVillage dataset is tested [49].
A lightweight CNN for leaf disease identification is developed and tested on five data-
sets [45]. A multi-granular feature aggregation approach using self-attention is tested
for crop disease classification [60]. A lightweight double fusion block with a coordi-
nate attention network (DFCAnet) is developed [13]. A shuffle attention method and
HardSwish function are introduced for recognizing tomato leaf diseases [52]. A cross-
attention module, and bidirectional transposed feature pyramid Network is developed for
apple disease detection [54]. A Multi-channel recurrent attention network is described
for tomato leaf disease prediction [53]. The least important attention pruning algorithm
selects the most important attention heads of multi-head self-attention module of each
layer in the Transformer model for detecting Cassava leaf disease [43].

A convolutional vision transformer-based lightweight model (ConvViT) is proposed
for apple leaf disease identification [26]. A Swin transformer is applied in the path
aggregation Swin transformer network (PAST-Net) [48] for detecting and segmenting
anthracnose-infected crops, e.g., apple, strawberry, pepper, etc. The Inception convo-
lutional vision transformer (ViT) is developed [51]. The explainable ViT fuses vision
transformers with CNN for plant disease identification [44]. A transformer-based with
spatial convolutional self-attention transformer is developed for strawberry disease iden-
tification [25]. The GANs have been explored to enrich data diversity from small-scale
various plant datasets [11]. GrapeGAN [23] follows a U-Net-like generator structure, and
the discriminator is built with a convolution block and capsule structure. Four types of
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grape leaf images are generated by GrapeGAN. Fine grained-GAN method presents a lo-
cal spot area data augmentation for grape-leaf disease classification [57]. Double GAN is
applied for producing high-quality leaf images, representing five classes of PlantVillage
dataset [55]. MergeModel identifies tea-leaf diseases [19]. It has applied the U-Net for
segmentation and SinGAN for augmentation.

Thermal imaging is explored for crop yield estimation, disease detection, and classi-
fication [34]. Thermal images were tested for disease detection from tomato, wheat, and
other leaves [18, 58]. The deep explainable artificial intelligence (PlantDXAI) classified
plant diseases using CNN-16 in thermal images [3]. The PlantDXAI could be improved
by adopting the class activation map and discriminator network during the training.
Blight disease detection in rice plants using thermal images is tested [9]. A fusion of
color information with thermal and depth information, could attain better accuracy
for detecting diseases [35]. In this work, we have presented an attention-driven deep
architecture tested on color and thermal leaf images for disease classification.

3. Proposed method

A global feature descriptor could be extracted from an input image using a backbone
CNN. Sometimes, a global descriptor might overlook underlying detailed information
and and might summarize an overall feature representation, which is relevant to a gen-
eral classification problem. In contrast, the detailed and subtle information is essential
for categorization of leaf sub-categories. An aggregation of partial feature descriptors
extracted from complementary regions could effectively capture finer details. We aim to
integrate subtle informativeness of several disjoint regions into a comprehensive feature
descriptor. The proposed APDC method combines contextual information from comple-
mentary regions by aggregating their overall weighted attention scores, which improves
holistic feature representation capability. The proposed APDC method is conceptualized
in Fig. 1; it is divided into three phases for easier understanding. The extraction of base
feature map, and region proposals are described in Phase 1. The attention module with
weight computation from pooled regions and is performed Phase 2. The classification is
discussed in Phase 3.

3.1. Disjoint region proposal

A region proposal generation method avoiding object detectors, segmentation modules,
or bounding box annotations is devised to capture contextual descriptions from differ-
ent locations of an input image. Let an input leaf image, Iy ∈ Rh×w×3, is to be fed
into a backbone CNN with its class label y representing a leaf category. A backbone
CNN extracts deep features F ∈ Rh×w×c, where h, w, and c denote the height, width,
and channels, respectively. The feature vector F represents high-level information of
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input Iy. It could also be interpreted that a local region at low-level image represen-
tation is summarized within a small window of the high-level feature space F. Thus, a
correspondence between a local image-region with its feature map is necessary to cor-
relate their significance holistically. We consider each uniform/regular region as a fixed
rectangular dimension of p × p pixels. The window-size for spatial pooling from different
uniform regions requires to be aligned because the spatial dimension of an Iy is squeezed
to a lower size at the deeper levels through successive non-linear transformations in bot-
tleneck layers of a standard CNN. Hence, F is upscaled to a higher spatial size q × q
using a bilinear interpolation. The number of RoIs is n = (q/p)2, generated without
additional pixel-level adjustment during spatial pooling. The set of RoIs is denoted as
R = {r1, r2, ..., rn}, and feature map of ri-th region is denoted as Fi. The feature maps of
all regions are FR =

{
Fr

}r=n

r=1 ∈ Rn×(h×w×c). In addition to these key steps of Phase 1,
a global average pooling (GAP) layer is added to optimize the output features of a base
CNN across the channel dimension. A GAP layer squeezes the spatial dimension of a base
CNN’s output feature map. The pooled feature vector is GR = GAP (FR) ∈ Rn×1×c

maintaining the same channel dimension of F.

3.2. Attention mechanism

The visual attention mechanism focuses on the most informative region(s) of an input
image to improve the learning efficacy of a deep architecture by contriving long-range
dependency of partial descriptors. Here, self-attention is applied across the channel
dimension of feature maps for all regions [2, 46]. The self-attention captures channel-
wise relationships among various regions. It correlates cross-channel feature interactions
and explores essential parts, accordingly. The self-attention uses three similar feature
vectors to compute attention scores: the query Q, key K, and value V which are derived
from the same feature vector GR. The attention matrix is considered as a dot product
of Q and K, multiplied by V to produce a weighted feature vector. Here, intra-attention
is applied to the rn region and its neighbor rm region such that n ̸= m. The attention
method generates feature vector V to focus on discriminative regions in Iy. The vectors
Gn and Gm are computed from the rn and rm regions, respectively. The feature map
is defined as

ϕn,m = tanh(WϕGn + Wϕ′Gm + bϕ) , (1)
θn,m = σ (Wθϕn,m + bθ) , (2)

where weight matrices Wϕ and Wϕ′ compute attention vectors of rn and rm, respec-
tively; and Wθ is their nonlinear combination. The bias vectors are bϕ and bθ, and
σ(·) is an element-wise activation function. The importance of each rn is computed
next using a weighted sum of the attention scores generated from all regions in R. The
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attention matrix Ĝn indicates the importance to be given to a region conditioned on its
neighborhood regions.

βn,m = softmax(Wβθn,m + bβ) , Ĝn =
n∑

m=1
βn,mGm , (3)

where the weight matrix is Wβ , and bβ is the bias. Next, the feature map Ĝn is
undergone to produce a weighted attention map γm using a softmax activation over all
regions. The output vector of attention importance scores is considered as attention
weights representing a high level encoding of all regions and is denoted as GA. This
overall attention map interprets underlying explanation of a given region by weighting
its importance towards decision making, essential for plant disease recognition.

GA =
n∑

m=1
γmĜm , γm = softmax(WϕĜm + bγ) . (4)

A residual path is connected by including a GAP layer to the feature maps of a base
CNN. This residual path supports further refinement of attentional weighted feature
description by improving the gradient flow from the output layers to early layers during
the learning without any additional computational overhead. The GAP layer inherently
selects the mean features by scaling down a high dimensional feature map precisely to
(1 × 1 × c), obtained from a base CNN by neglecting trivial information. Also, the GAP
enriches the confidence scores for classification, and is robust to spatial translation. The
rendered feature map is denoted as H = GAP (F) ∈ R1×1×c where the feature mapping
is F → Fgap : R(1×1×c). Both GA and H feature vectors are added to represent the final
attentional feature vector FA ∈ R(1×c).

FA = Addition
(

GA, H
)

; Ypred = Softmax(FA) . (5)

3.3. Image classification

The dropout and batch normalization layers act as regularizers to ease overfitting is-
sues, stabilizes and accelerate the speed of training. Thus, these two layers effective for
enhancing the performance during the training. The final feature vector FA is passed
through a softmax layer to compute the output probability vector representing each class
of leaf sub-categories. The categorical cross-entropy loss Lce(Ytrue, Ypred) optimizes the
errors between the true class label (Ytrue) and predicted class label (Ypred). Overall,
the attention technique strengthens the distinctness of feature vectors by capturing finer
details without adhering to computational complexities, which is essentially required for
leaf disease classification in the proposed APDC method.

Machine GRAPHICS & VISION 33(1):47–67, 2024. DOI: 10.22630/MGV.2024.33.1.3 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.3


54 An attention-based deep network for plant disease classification

Fig. 2. Samples of leaf images of the PlantPathology-22 dataset.

3.4. Model implementation

The standard backbone CNNs are used for deep feature extraction in Phase 1 of the pro-
posed APDC. The input image-size of 224×224 is fed into a deep CNN, e.g., MobileNet-
v2 [39], NASNetMobile [59], DenseNet-169 [20], Inception-v3 [42], etc. During the im-
age pre-processing stage, data augmentations of random rotation (±30 degrees), scaling
(1±0.30), and random region erasing (within 0.2-0.7 scale) with a fixed RGB value
q = 127, are applied for data diversity. Though the output feature dimension of various
base CNNs are different, the feature maps are rescaled to a higher resolution using a
bilinear interpolation for uniform spatial pooling in Phase 1. For example, a feature map
of size 7×7 is upsampled to 40×40 and then the features of non-overlapping regions with
a fixed size are computed. Three different sets comprised a total of 16 (4×4), 25 (5×5),
and 36 (6×6) regions are generated for experiments. The upscaled resolution is 42×42
for 36 regions, and 40×40 for 25 and 16 regions. The purpose of using such resolutions
is to maintain proper pixel alignment during spatial pooling with a fixed window size.
However, no feature dimension is calibrated in Phase 2. The output dimension of at-
tention and GAP layers are the same as the output channel dimension of a base CNN,
e.g., c = 1280 for MobileNet-v2. Finally, a batch normalization and a dropout rate of
0.2 are applied for stabilization of input distributions and regularization for improving
the training capacity prior to a softmax layer in Phase 3. Our model is trained with pre-
trained ImageNet weights for initializing a base CNN, as well as trained from scratch,
i.e., random initialization in different experiments to observe performance variation due
to weight initialization not altering other parameters.

The Stochastic Gradient Descent (SGD) is used to optimize the categorical cross-
entropy loss function (Lce) with an initial learning rate of 1×10−3, and multiplied by
0.1 after every 75 epochs for smoother convergence of the learning parameters θ. The
proposed APDC is trained for 200 epochs with a mini-batch size of 8 using a Tesla M10
GPU of 8 GB. The top-1 accuracy [%] is used for performance evaluation. The model
parameter is estimated in million (M).
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Fig. 3. Diseased leaves of the PaddyDoctor-13 dataset representing infected leaves of plants and crops
collected in a natural field environment.

Fig. 4. Examples of diseased leaf images of PaddyCrop-6 thermal dataset.

4. Experimental results and discussions

First, a summary of various datasets tested in this work is briefed. Next, the experi-
mental results, ablation studies, and visualizations are analysed.

4.1. Dataset description

One of the major challenges in agricultural disease diagnosis is the availability of a large
realistic dataset of various crops and plants. Since the inception of the PlantVillage
dataset, the largest crop dataset to date (to the best of our knowledge), several ap-
proaches have been tested for disease recognition and classification. However, this epi-
demiological dataset is curated in a controlled environment (Fig. 5) and not presented
in a realistic manner (e.g., does not consider natural background, leaves are indepen-
dent and isolated), which is considered as a restriction of this dataset while dealing with
a real-world scenarios in agricultural fields. To alleviate this limitation, several other
datasets representing various plants/crops are constructed (e.g., Fig. 3). However, most
of these recent plant datasets are small-scale, which is further increased in size and image
quality by leveraging GAN-based and other augmentations.

A summary of the datasets used in our study is listed in Table 1. Examples of diseased
leaves from different datasets, namely PlantVillage-25 [22] (Fig. 5), PlantPathology-
22 [14] (Fig. 2), PaddyDoctor-13 [24] (Fig. 3), and PaddyCrop-6 [3] (Fig. 4) are illus-
trated. The image examples imply that the PlantVillage and PlantPathology datasets
are formulated in a simple and clear background condition. On the contrary, PlantDoc
and PaddyDoctor represent realistic field environments and complex backgrounds.
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Fig. 5. Samples of diseased leaf images of the PlantVillage dataset.

Tab. 1. Summary of the datasets tested in this work.

Dataset Name Train Test Class Type

PlantVillage-25 24240 16053 25 RGB
PlantPathology-22 2695 1809 22 RGB
PaddyDoctor-13 12980 3245 13 RGB
PaddyCrop-6 397 240 6 Thermal

The PlantPathology-22 dataset represents healthy (2278) and diseased (2225) leaves
from 12 different plants, containing a total of 4503 images and categorised into 22 fine-
grained classes.

The thermal images of diseased and healthy leaves of paddy crops comprising a total
of 636 samples representing 6 classes were collected using a high-resolution FLIR E8
Thermal camera. Details of this dataset are given in PlantDXAI [3].

4.2. Performance analysis

Firstly, the baseline performances on each dataset are evaluated using four base CNNs.
Next, the performances of our method using 16 (4×4), 25 (5×5), and 36 (6×6) RoIs
are evaluated in different sets of experiments. The results are given in Table 2. The
results imply that the accuracy could be improved with a more number of regions.
Because, the attention mechanism focuses on the most important regions of leaf images
and emphasizes their inter-channel interactions for weighted feature aggregation. The
attention scheme enhances overall prediction performances using four base CNNs. The
experimental results, given in Table 2, are achieved by training with ImageNet weights
for a fair comparison with existing works on diverse datasets. The model parameters
(last column, Table 2) of various experiments remain almost the same for different RoIs
and differ according to the backbone CNNs.

Next, the performances on these datasets are evaluated by training the networks from
scratch, i.e., initializing the APDC with random weights, and the results are reported
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Fig. 6. Confusion Matrix of APDC (36 RoIs) on the PlantVillage-25 dataset.

Fig. 7. Confusion Matrix of APDC (36 RoIs) using DenseNet169 on PlantPathology (left) dataset.
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Tab. 2. Top-1 accuracy [%] of the proposed APDC using various CNNs backbones trained with Ima-
geNet weights on five plant datasets. The accuracy of similar experiments attained by the CNNs
trained from scratch is given in parenthesis. Bold font indicates the best performance(s) for
each dataset.

Method PlantVill PlantPath Pad’Crop Pad’Doc Par

Mob’Net 97.98 (97.69) 94.96 (90.76) 96.66 (83.33) 98.24 (95.82) 2.3
16 RoI 99.32 (98.43) 97.34 (94.79) 97.91 (94.16) 99.02 (96.63) 2.4
25 RoI 99.58 (99.61) 97.45 (95.52) 98.75 (95.41) 99.47 (98.20) 2.4
36 RoI 99.97 (99.90) 97.62 (97.12) 99.16 (98.25) 99.62 (98.85) 2.4

NasNet 98.49 (95.51) 95.13 (93.58) 95.00 (86.25) 98.14 (95.30) 4.3
16 RoI 99.73 (98.34) 97.46 (96.23) 97.50 (94.58) 99.04 (98.70) 4.4
25 RoI 99.85 (98.76) 97.61 (97.10) 98.33 (95.00) 99.25 (99.21) 4.4
36 RoI 99.93 (99.85) 97.65 (97.24) 99.52 (95.82) 99.60 (99.40) 4.4

DenseNet 99.31 (97.92) 96.73 (92.80) 95.83 (87.50) 98.40 (96.62) 12.7
16 RoI 99.52 (98.55) 97.56 (95.52) 99.16 (93.75) 99.26 (98.45) 12.9
25 RoI 99.67 (98.67) 97.61 (96.72) 99.50 (96.21) 99.58 (99.02) 12.9
36 RoI 99.94 (99.89) 97.74 (97.32) 99.58 (98.52) 99.65 (99.43) 12.9

Inception 99.37 (97.65) 96.23 (92.53) 97.00 (86.23) 98.00 (96.72) 21.9
16 RoI 99.91 (98.55) 97.51 (96.23) 98.75 (95.30) 99.41 (98.71) 22.0
25 RoI 99.92 (98.98) 97.60 (97.12) 99.28 (95.81) 99.56 (99.32) 22.1
36 RoI 99.97 (99.94) 97.64 (97.21) 99.62 (97.50) 99.63 (99.41) 22.1

Tab. 3. Performance Summary of APDC (36 RoI) using various metrics [%].

Dataset Base CNN Top-1 Top-5 Precision Recall F1-score

PlantPathology DenseNet169 97.74 99.94 98.0 98.0 98.0
PaddyCrop MobileNetV2 99.16 100.0 99.0 99.0 99.0
PaddyDoctor MobileNetV2 99.62 99.97 100.0 100.0 100.0
PlantVillage MobileNetV2 99.97 100.0 100.0 100.0 100.0

within parenthesis in Table 2. It signifies a clear distinction between the accuracy of
APDC while trained with ImageNet weight vis-à-vis random weight initialization which
requires more epochs to attain similar accuracy compared to the former. Our model
is trained for 300 epochs from scratch in this test, while other hyper-parameters were
unaltered. Whereas, 200 epochs are sufficient to attain satisfactory results with the
ImageNet weights, which converged quickly. The influence of pre-trained ImageNet
weights, compared to random weights, for plant disease prediction accuracy is notable.
This accuracy gaps are small on the PlantVillage, and PlantPathology datasets. A reason
could be the nature and characteristics of datasets. The samples of these two datasets
(Fig. 5-2) were collected in a controlled manner with limited variations by following
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Fig. 8. Confusion Matrix of APDC (36 RoIs) using MoblieNetv2 on the PaddyDoctor (left) and Pad-
dyCrop (right) datasets.

Fig. 9. t-SNE plots of baseline (left) and APDC (36 RoI) using DenseNet-169 (ImageNet) on the Plant-
Pathology dataset.

simple image acquisition scenarios. A summary of the best performances (%) of APDC
with 36 RoIs and ImageNet weights on five datasets using standard metrics, namely
the top-1 accuracy, top-5 accuracy, precision, recall, and F1-score, are evaluated and
reported in Table 3.

Also, one confusion matrix per dataset is shown in Fig. 6-8 for better clarity. In this
assessment, MobileNetv2 (MN) is considered for the PlantVillage (Fig. 6), PaddyCrop,
and PaddyDoctor datasets (Fig. 8). Whereas, DenseNet169 (DN) is used for generating
the confusion matrices on the PlantPathology dataset (Fig. 7) for fair comparison.
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Tab. 4. Performance comparison with SOTA on the PlantVillage dataset

Method [Ref] Plant’s Disease / #Class Dataset Size Accuracy [%]

GrapeGAN [23] Grape leaf 4.1 K 96.13
Fine-grained-GAN [57] Grape leaf-spot disease 1.5 K 96.27
ConvViT [26] Apple disease 15.8 K 96.85
DenseNet-169 [1] Corn Foliar disease, 4 cls. 9.1 K 99.50
PCA DeepNet [36] Tomato, 10 classes 18.1 K 99.60
Double-GAN [55] 10 disease, 5 classes 31.3 K 99.70
PDD271 [27] 38 classes 50.3 K 99.78
FPDR (ResNet50) [16] 38 classes 50.3 K 99.84

APDC: MobileNet-v2 25 classes 40.3 K 99.97
DenseNet-169 99.94

4.3. Performance comparison

According to our study, many SOTA methods have achieved more than 99.50% accuracy
on the PlantVillage dataset [27], and a few recent of them are listed in Table 4 for com-
parative study. The dataset was created in a controlled laboratory setup with a clear
background. Hence, several deep-learning models achieved 99.50% accuracy. The gains
in different successive works are competitively very small, e.g., 0.1% only between [36]
and [55]. In this work, the average accuracy achieved by APDC with 36 RoIs is 99.95%
with a standard deviation of ±0.02, considering four base CNNs trained with ImageNet
weights (Table 2). The results on PlantVillage are computed with 25 classes of leaf
categories. A brief description of existing disease prediction approaches and their ac-
curacies are summarized in Table 4. The APCD (99.95%) has attained a competitive
gain of 0.25% accuracy compared to Double-GAN (99.70%), whereas the accuracy gain
over other methods is significant. The PCA DeepNet [36] reported 99.60% accuracy
and 98.55% precision. Our APDC has gained 100% precision and F1-score (Table 3).
In [27], 99.78% accuracy is obtained by ResNet-152, which is a heavier/deeper base model
(≈60.4M) regarding the model parameters compared to lightweight backbones used here.
The detailed results are given in Table 2. The IBSA-Net [52] has reported 99.40% ac-
curacy, 98.90% precision, 99.30% and recall. Considering FPDR [16] as the previous
best accuracy, 99.84% using ResNet-50 with ImageNet weights, the best 99.97% accu-
racy of APDC implies a 0.13% margin, with a lesser model parameters of MobileNet-v2.
Nevertheless, to analyze the efficiency of our model, the gains on other datasets are sig-
nificant. We have achieved SOTA performances on recently published public datasets.
Rigours experiments have been conducted on the PlantPathology, PaddyDoctor, and
PaddyCrop datasets. A fused multi-stream fusion (fsn) with learnable filters scheme [37]
has reported 90.02% accuracy on the PlantPathology, curated with a clear background
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Tab. 5. Comparison with SOTA on the PlantPathology, PaddyDoctor, and PaddyCrop Datasets [%].
The bottom row-set provides the accuracy of APDC with 36 RoIs using different base CNNs.

PlantPath’y Acc PaddyDoc Acc PaddyCrop Acc

Multi-strm fsn [37] 90.02 MobileNet [24] 92.42 CNN16 [3] 88.63
DenseNet201 fsn [21] 96.14 ResNet34 [24] 97.50 PlantDXAI [3] 90.04

MobileNetv2 97.62 MobileNetv2 99.62 MobileNetv2 99.16
DenseNet169 97.74 DenseNet169 99.65 DenseNet169 99.58

like the PlantVillage. An ensemble of CNNs and statistical descriptors has reported
an improved classification accuracy of 96.14% using DenseNet-201 [21]. Contrarily, our
method has achieved at least 97.62% accuracy using MobileNet-v2 with 36 RoIs. The
highest 97.74% accuracy is attained by DenseNet-169. The results are given in Table 5.

PaddyDoctor is a recent dataset on which transfer learning were tested [24]. The best
97.50% accuracy is achieved by ResNet-34, and MobileNet has attained 92.42% accuracy
by training with ImageNet weights. The accuracy of APDC underlying on MobileNet-
v2 (ImageNet weights) is 99.62%, and training from scratch achieves 98.85% accuracy.
Also, APDC based on other CNNs has obtained SOTA results on PaddyDoctor (Table 5)
irrespective of training scheme.

The PaddyCrop is a very small dataset containing thermal leaf images of infected
rice crops. The PlantDXAI [3] is built with a CNN-16 and trained with class activation
map and discriminator network. It has attained 90.04% accuracy on PaddyCrop. The
accuracy achieved by our method underlying on DenseNet-169 is 99.58%, and Inception-
v3 is 99.62%. Also, more than 99% accuracy is gained by APDC with 36 RoIs, while
trained with ImageNet weights. The comparative results are given in Table 5. Overall
result analysis evinces that our method outperforms existing works and achieves SOTA
performances.

4.4. Ablation study

The necessity of major components of APDC is evaluated through two types of ex-
periments. Firstly, various sets of regions avoiding the attention module are tested to
understand their usefulness on different datasets using MobileNet-v2, NASNetMobile,
and DenseNet-169 backbones. The results are given in Table 6. The contributions of
various RoIs sets are notable using MobileNet-v2. However, in a few other cases, dif-
ferences between the accuracies of 25 and 36 RoIs using various CNNs are small, e.g.,
PlantPathology. A reason could be the characteristics of dataset formulation which
considered a simple background, such as the PlantPathology (Fig. 2). As a result, a
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Tab. 6. Ablation Study I: Top-1 accuracy [%] in proposed APDC (ImageNet Weights) with RoIs Only,
excluding attention mechanism.

Base CNN RoIs PlantPathology PaddyCrop PaddyDoctor

MobileNet-v2 16 96.18 94.58 98.85
25 96.40 96.66 98.98
36 96.79 98.75 99.10

NASNetMobile 16 95.06 95.46 98.80
25 96.02 96.24 99.12
36 97.01 96.66 99.44

DenseNet-169 16 96.90 98.33 99.16
25 97.21 99.16 99.44
36 97.34 99.50 99.56

Inception-v3 16 96.84 98.35 99.19
25 97.06 99.16 99.41
36 97.23 99.58 99.63

Tab. 7. Ablation Study II: Top-1 accuracy [%] of using attention on lightweight CNNs (random weight
initialization) outputs, neglecting RoIs.

Base CNN PlantPathology PaddyyCrop PddyDoctor

MobileNet 95.56 88.75 96.46

NASNet 95.44 87.25 96.23

few smaller regions may represent trivial information which directs the network to fo-
cus on central part of an image where crucial information about an infected leaf exists,
neglecting other regions as insignificant.

Fig. 10. A generalized CNN-based attention model excluding the regions from proposed APDC.
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Next, lightweight MobileNet-v2 and NASNetMobile backbones are considered only
and trained with random weight initialization. Here, the candidate regions are ne-
glected from full model, and only intra-attention is applied to the base CNN’s output
features, followed by a GAP layer before a softmax layer. The deep network is shown in
Fig. 10. The base CNN could be replaced by other backbones, e.g., ResNet, DenseNet,
and other CNN families. The results are given in Table 7. In this test, the model
parameters are reduced slightly, which also causes performance degradation in various
datasets. The parameters of considering 36 RoIs for MobileNet-v2 based implementation
are 2.46 M. Whereas, excluding the regions, 2.34 M parameters are required using the
same MobileNet-v2. Similarly, the parameters for NASNetMobile based implementation
are 4.34 M. These results (Table 7) are competitive on various datasets. This study
justifies that complementary RoIs are effective to accomplish SOTA results on diverse
plant datasets.

5. Conclusion

This paper proposes a deep architecture utilizing a visual attention mechanism, called
APDC, for plant disease classification from visual/thermal images of leaves. Experiments
were carried out using four plant datasets representing a wider variations in the plant
categories, and background conditions. The proposed method follows an end-to-end
trainable deep network and simple implementation using class labels only. It avoids
extra pre-processing stage or sub-network for data pre-processing compared to existing
techniques. The proposed APDC has achieved SOTA performances and emphasized
lightweight CNN implementation balancing the accuracy with lower model parameters,
unlike the existing ensemble of multiple CNNs-oriented techniques which are heavier
models. The lightweight implementation of APDC requires lesser than 5M parameters
only. We plan to develop a realistic approach for experimenting on larger and real-
world datasets for plant disease classification in the future. A fusion with other sensory
information such as soil data of agricultural fields will be another pertinent research
direction for sustainable agricultural growth.
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Abstract Bone fractures are common in diabetic patients and can result in several musculoskeletal
conditions. Both type 1 and type 2 diabetes substantially increase the risk and severity of bone frac-
tures. Prompt treatment and management of diabetes and its complications are crucial to mitigate this
serious complication. Detection and diagnosis in its early stage can reduce the challenging conditions in
treatment. Traditional image processing techniques like digital-geometric analysis, entropy measures,
and gray-level co-occurrence matrices have been used for automated bone fracture detection. However,
these detection methods rely neither on healthy controls nor diabetic-affected patients. Only few stud-
ies focused on detecting fractures in diabetic patients. The rising prevalence of diabetic ankle fractures
made the study emphasize the development of a fracture detection model based on the Meta Magnify
(MetaMag) efficiency model. The proposed model involves the Lower Extremity Radiographs (LERA)
dataset, which consists of image samples of normal and abnormal lower extremities of the body, such
as the hip, ankle, knee, and foot. Pre-processing involves a one-hot encoding method that handles
the missing data and represents categorical variables as numerical values. Further, the classification is
performed using the MetaMag efficiency model, incorporated with MetaMag scaling and unified nor-
malization. Further, the efficiency of the proposed model is analyzed by comparing it with conventional
EfficientNet and another model. Finally, the proposed work’s performance is analyzed using evaluation
measures such as accuracy, precision, recall and F1-score. The results indicate the improved efficiency
of the model.

Keywords: fracture, Lower Extremity Radiographs dataset, diabetes, Deep Learning, radiograph
images, EfficientNet.

1. Introduction

Among other parts of the body, the knee is considered the most complex joint that
involves many daily activities. A high prevalence of knee injuries occurs due to twisting
movements and sudden changes of direction [7]. This creates chances of knee damage and
other risk factors leading to severe impact on the patient’s lifestyle. Approximately one
in eight patients has diabetes and undergoes treatment for rotational ankle fractures.
With this, complications of ankle fracture fixation in patients with Diabetes Mellitus
(DM), after surgery vary between 26% and 47% [20]. Several researchers have also
identified that an ankle injury may trigger the process of Charcot neuroarthropathy.
These higher complication rates can cause bone deformity, loss, and joint destruction.
The most affected areas damaged due to an injury are the patellofemoral, ligaments,
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cartilage, and meniscus. In addition, the data analysis has resulted that a large cohort
of 58 748 patients who undergo ankle fracture fixation in New York discovered that 12.5%
were diabetic, and 14.6% of patients resulted in complicated diabetes [10]. Moreover,
the widely used methods involved in detecting lesions in the knee part are Magnetic
Resonance Imaging (MRI) and X-ray copies [3]. The results produced by these methods
are promising, but there is still a need to develop new equipment and research. So,
in recent times, AI has emerged as the significant opinion of specialists that assist in
providing non-invasive tools, and low-complexity and low-cost instruments [11]. These
methods enable the system to extract the patterns from the input data and map the
relationships among the input variables and outcomes. Thus, these new technologies tend
to efficiently identify knee abnormalities and diagnosing methods at their early stages to
avoid higher consequences of disease in patients. Although these techniques effectively
detect and interpret fractures in DM patients, they lack high detection accuracy due to
the irregularity and lucidity in the input sample images.

On the contrary, several studies investigated the prediction of knee fractures in dia-
betes patients by using Machine Learning (ML) and Deep Learning (DL) algorithms [1,
31]. Hence, the considered study [25] implements Convolutional Neural Network (CNN),
to perform the detection of abnormality on lower extremity radiographs. The lower ex-
tremity includes the range of abnormalities in hip, knee, ankle, and foot radiographs.
This study’s larger dataset comprises almost 93 455 input samples of lower extremity
radiographs of several body parts. These samples are labeled as normal and abnormal
at the initial interpretation by the attending radiologist. The CNN is pre-trained with
161-layer densely connected to achieve improved accuracy in the process of classifica-
tion. The performance of the study was analyzed by using three different models such
as pre-trained ResNet-101, DenseNet-161 [30], and ResNet-50. Further, an extensive
random hyperparameters search for each model is performed. The motive of the study is
to provide increased accuracy in the classification tasks. This is done by augmenting the
dataset by using MURA radiographs, this tends to optimize the efficacy of the model.
From analysis, it is found that the DenseNet-161 produced better diagnostic accuracy. In
the other aspects, the intimated study [2] applies the detection of Anterior Cruciate Liga-
ment (ACL) using the DL model. The model involves the customized 14-layer ResNet-14
structure of CNN and six directions. This is done by involving real-time data augmenta-
tion and hybrid class balancing. Three classes are classified: ruptured tears, partial and
healthy. Initially, the data pre-processing undergoes three steps and after the steps, the
three classes are raised. The original version-I residual ResNet-18 in the classification
model is modified into ResNet-14 network architecture. Here, the Batch Normalization
(BN) is added after the CNN model and previous to the activation function Rectified
Linear Unit (ReLu) [29]. The fine-tuned hyperparameters are being used that provide
a huge impact on the effectiveness of the method. The outcomes of the study projected
better outcomes in terms of accuracy, specificity, sensitivity, F1-score, precision, and
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AUC. However, the techniques failed to produce improved classification accuracy and
enhanced input sample images to perfectly interpret the affected region [19].

The present study aims to further optimize the automatic detection of fractures
by using a DL model with radiographic images. The MetaMag efficiency model using
MetaMag Scaling along with Unify Normalization is proposed in the present study, which
tends to significantly increase the detection of fractures and classifies whether the input
is fractured or non-fractured. Input from the LERA dataset is first passed into the pre-
processing stage, where the one-hot encoding method is applied. This method endeavors
to handle missing values and generates efficient features for classification. Then the
pre-processed data are fed into the train-test phase, where the train data are used for
pre-training the classifier. In the classification process, the MetaMag efficiency model
undergoes MetaMag scaling that uniformly scales all the dimensions of resolution, width
and depth for procuring improved performance. It systematically analyses the model
scaling and identifies the balancing network using a simple yet highly effective compound
coefficient. This work focuses on improving the practical efficiency of the traditional
EfficientNet model by using the unified normalization that reduces the computational
loss and inexpensively fine-tuning at higher resolution. It eventually increases the size of
the image and aids in obtaining finer details of the input image. This helps the classifier
distinguish the input images into two categories: normal as 0 and abnormal as 1. Thus,
the efficiency of the proposed model is evaluated by using performance measures.

1.1. The main contributions of the study

• To efficiently classify the normal and abnormalities in the input LERA dataset, to
detect fractures in the lower extremities of the human body.

• To implement MetaMag scaling and Unify Normalization approaches to precisely
analyze the attributes and improve classification accuracy.

• To evaluate the model’s efficacy by involving performance measures: accuracy, recall,
precision, and F1-score.

• To compare the proposed MetaMag efficiency model with other conventional algo-
rithms to project the effectiveness of the proposed system.

• To develop MetaMag efficiency model for improved bone fracture classification accu-
racy and efficiency, as well as plans to create automated systems to assist clinicians
in diagnosis and treatment planning.

1.2. Organization of the paper

The remaining parts of this paper are organized as follows. Section 2 deliberates the
review of conventional works with the problems identified by analysis of several studies.
Section 3 expounds on the projected procedures with the proposed flow, algorithms, and
their mathematical derivations. Subsequently, section 4 presents the results attained by
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the proposed and conventional models. The overall study is concluded in Section 5 with
future suggestions.

1.3. Motivation of the research

Patients with both type 1 and type 2 diabetes have a significantly increased risk of bone
fractures compared to those without diabetes. Diabetes can impair bone quality and
fracture healing, leading to a higher risk of complications like delayed union, non-union,
or prosthetic joint formation. Identifying and managing bone fragility in diabetic pa-
tients is an emerging challenge that requires more attention, as current osteoporosis and
diabetes guidelines do not adequately address this issue. Improving the understanding
and management of bone health in diabetes is crucial to mitigate this serious complica-
tion. Hence, the proposed model utilises LERA for effective classification process.

2. Literature review

The analysis of various studies on fracture detection using different strategies and the
methodologies and problem identification for specific studies are also deliberated.

The human knee joints are the main and complex joints present in the human body
that maintain weight and offer flexible movements of the body. It bears the excess load
and is thus highly prone to injuries. So, detecting knee injuries as early as possible is
important to avoid complications and provide appropriate treatments.

The study [14] involved the prediction of Knee Osteoarthritis (KOA) using the ML-
based approach. The study has applied a multidisciplinary Osteoarthritis Initiative
(OAI) database collected through self-reported data on joint symptoms, physical activity
indexes, disability and function, physical examination data, and questionnaire data.
Initially, the data pre-processing has been done by implying data imputation to tackle
the missing values. Then, the feature selection was done by integrating the output of
six feature selection algorithms, three embedded techniques, one wrapper, and two filter
algorithms. Whereas, the ML-based techniques like Logistic Regression (LR), k-Nearest
Neighbor (KNN), Random Forest (RF), Naive Bayes (NB), Decision Tree (DT), XGBoost
and SVM have been evaluated for validating their sustainability been utilized to solve
the classification issues. The better accuracies produced by these models have been
identified and found that the SVM model has performed better, producing an accuracy
of 74.07%. Even though the model has been reliable, the predictive capacity has to be
improved predominantly.

Knee abnormalities are mostly due to hard injury or osteoarthritis that greatly impact
the patient’s health. Generally, the MRI plays a vital part in detecting the biochemical
and morphologic features that provide an in-depth understanding of patterns. So, the
suggested study [23] has MRI-based studies to conduct the identification of lesion severity
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in the ACL, meniscus, bone marrow, and cartilage. A three-dimensional CNN has been
developed to identify the Region of Interest (ROI) and then grade the abnormalities.
At first, the segmentation was performed by using two V-Net architectures under two
consecutive steps. From analysis, it has been consolidated that the study has produced
improved specificity, sensitivity, and multiclass lesion severity staging in several tissues
of the knee. In addition, the generalizability of the model has to be improved, and the
assessment of lateral and medial ligaments has to be considered. On the other hand,
the intimated study [13] has relied on the detection of abnormalities and classification
automatically using Musculo-Skeletal Disorders Network (MSDNet). These methods
have been an ensemble of CNN that integrates the features of several CNN models to
improve the performance of abnormality classification. A boundary detection algorithm
has been developed to predict the ROI to facilitate enhanced detection of anomalies. The
MSDNet is the combination of both AlexNet and ResNet18 structures. Firstly, the global
features have been produced from the AlexNet by directly feeding the original input data,
whereas the local features have been generated by the ResNet18 model. The overall
accuracy produced by the MSDNet model is 82.69%. Among aged people, the main
factor for fracture [6,24,29] is due to the reduction of bone density. A low-cost diagnostic
technology is important in identifying osteoporosis in its initial stage. So, the suggested
study [15] has analyzed osteoporosis using X-ray radiography to predict the essential
components and categorize it into osteoporosis, osteopenia, and normal. The study has
implemented three CNN architectures namely, ResNet18, Xception, and Inceptionv3
models. This ensemble method has implied a fuzzy rank-based fusion of classifiers by
considering the two different factors. A fuzzy ranking-based approach has been applied,
which has been exposed to two distinct non-linear processes. After implementation, the
study’s outcomes have shown that the study has produced a classification accuracy of
93.5%. The accuracy has been hindered due to overlapping cells or insufficient picture
quality that made complexity in classifying the images effectively.

The advancements in radiological technologies have improved the treatment of various
diseases. But, when compared with a huge number of fractural patients, the number of
radiologists is insufficient. This makes radiologists astounded by the large amount of
medical image data. Hence, the imitated study [12] has deployed a backbone network
by applying dilated convolutions to detect the fractured thigh region. The DL method
known as Dilated Convolutional Feature Pyramid Network (DCFPN) has been used, in
which stage 1 has been adopted to extract the features from the original image. It has
been insisted that the dilated convolutional kernel could gain more information from
the extended receptive field. The FPN structure has been comprised of five feature
maps. The Region Proposal Network (RPN) has been developed to generate the region
proposal that shares the convolutional feature maps. Thus, the output is an image
with a predicted bounding box. The radiologists have used the technique of Computer-
Aided Diagnosis (CAD) to diagnose the fractures [8,22] on bones, which minimizes their
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difficulties. Thus, the suggested study [16] has involved classification using a Crack
Sensitive Convolutional Neural Network (Crack-Net) to identify the sensitive fracture
lines on human bones. This paper clearly explains the two different stages of discovering
the fracture [4, 21, 26]. Initially, Faster R-CNN, which is Faster Region with CNN, was
deployed. This method has been performed to identify 20 types of bone regions and
fractures [27] using Crack-Net in the collected X-ray copies. The results have shown
that from the total of 1052 copies 526 copies are fractured copies.

Further, the study has produced an accuracy rate of 90.11% and an F-measure of
90.14% of the x-ray copies. In radiographs, the method of Guided Anchoring (GA) Faster
R-CNN has been used to identify and locate the fractures in hand [28]. This GA method
has resulted in improved, accurate, and effective anchor generation. It has eventually
increased the network’s performance and saved computing energy. In this system, the
Feature Pyramid Network (FPN) method has been used to detect small fractures [5, 9]
such as knuckles and fingertips joints and others. Additionally, the implementation of
balanced loss (L1) has been applied to adapt imbalanced learning tasks. The result of
this system has shown that among 3067 HF dataset X-ray copies, 2453 are training data
and 614 are testing data. The accuracy of the dataset has been achieved to be 97%-99%
with an Average Precision (AP) of 70.7%. This System has accomplished all the other
conventional methods for identifying HF.

Problem identification
• The study has involved the detection of fractures using X-ray images. Though the

system has produced a better detection rate, the classification accuracy can be promi-
nently improved by applying different algorithms [16].

• The risk factors accompanied by knee osteoarthritis have been involved in the study
using DL models. The accuracy produced by the study has been identified to be
74.07%. It can be further improved to support radiologists in finding the complexi-
ties [14].

• Binary classification of lower extremity fracture has been performed in the study
and produced limitation of producing generalizability in detecting the abnormalities.
Efficient methods can be applied to detect the fracture [25].

3. Proposed methodology

DM is a metabolic disorder that increases the chance of interfering with bone formation
and fracture risk. This leads to the impairment of fracture healing and several other
common features that affect the bone. DL techniques greatly impact the medical do-
main and lead to advancements in the detection of abnormalities that help in affording
early diagnosis of diseases. There is still a lack of studies investigating the association
between DM and fracture risk in patients. The possible solutions to fracture risk should
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Fig. 1. Illustrative diagram of the overall methodology

be addressed at an early stage to avoid the severity of risk in patients with diabetes.
Spontaneous calcaneal fractures without obvious trauma may occur in diabetic patients
sometimes accompanied by DFU. With this intention, the initial phase concentrated on
detecting the foot ulcer in DM patients. The study implemented a Deep Convolutional
Neural Network (DCNN) based on the Xception model to classify healthy and DFU skin
images. The DCNN-based Xception classifier was integrated with Residual Linearly
Clamped Layers (RLCL) comprising minimum detached convolution layers. Further,
the input images are optimized by using image enhancement techniques such as His-
togram equalization, Adaptive filter, and Gamma correlation. Then, the efficiency of
the proposed system is evaluated based on the performance measures, namely precision,
F1-score, recall, and accuracy, to validate the performance of the proposed model with
existing algorithms. Though the study has proclaimed improved efficiency. It is notewor-
thy that patients manifesting systematic signs of diabetic foot infection cause fractures
or dislocations of the ankle or foot. With this regard, it is also significant to address the
challenges faced by the diabetic patients with lower limb amputations. So, the present
work focussed on detecting and classifying the normal and fractured bone classes by
using the MetaMag efficiency model. This method tends to reduce the problems related
to high-risk factors and efficiently contributes towards risk reduction and management.
The overall process involved in the proposed technique is demonstrated in Figure 1.

The input from the LERA dataset (see Section 3.1) is first passed into the pre-
processing stage, where the one-hot encoding process is applied. This method tends
to handle the missing values and generates efficient features for classification. Then
the pre-processed data are fed into the train-test phase, where the train data are used
for pre-training the classifier. Further, the classification is performed by a MetaMag
efficiency classifier that involves MetaMag scaling and a unified normalization process
that supports enhancing the performance of the proposed method. The classifier classifies
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Tab. 1. Class Distribution of LERA Dataset.

Samples Hip Foot Ankle Knee

Abnormal images 3 36 36 99
Normal images 91 12 285 435
Total images 94 348 321 534

the input images into two categories: normal as 0 and abnormal as 1. Wherein the
prediction phase validates the classifier’s efficiency by using test data and analyses by
using performance measures.

Association of diabetes with fractures
• DM type 1 and type 2 affect several people worldwide and are characterized by hy-

perglycemia. The traditional impediments of DM are microvascular complications
like neuropathy, nephropathy, and retinopathy. Whereas the macrovascular compli-
cations include CVD (Cardiovascular Disease). The researchers have also found that
diabetes affects the bones of DM patients with increased chances of fracture due to
impaired bone quality. Further, the fracture risk in diabetes patients can be described
by possible cofounders, diabetes type, and fracture site.

• Type 1 DM is related to a modest reduction of bone mineral density. Type 2 DM
increases the chance of affecting bone health in its advanced phases of disease. The
biomechanical characteristics of bone and bone architecture are negatively impacted
by chronic inflammation, Advanced Glycation End products (AGE), hyperglycemia,
and insulinopenia.

• Several methods are used to evaluate bone quality in DM, including the diagnosis
based on X-ray images, MRI images, Grayscale images, Red Green Blue (RGB) im-
ages, and radiography images.

3.1. Dataset description

The dataset used in the proposed method is LERA [17], which covers the broad range
of joints and bone abnormalities of lower extremity areas of the human body. The
dataset is considered a diverse-natured dataset due to its collection over a wide range of
time, from 2003 to 2014. This LERA dataset comprises anomalous and standard image
dissemination and sample images of hip, ankle, knee, and foot bones. This dataset has
been accumulated by HIPAA complaint that compiled data from almost 182 patients
who have undergone radiographic examination at Standard University Medical Centre.
A total of 1297 normal and abnormal images of lower extremities have been presented
in the dataset. Table 1 shows the class distribution of the LERA dataset.

The LERA dataset is one of the benchmark musculoskeletal radiograph image data-
sets and has been applied in the proposed approach for producing a relatively improved
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a

b
Fig. 2. LERA Dataset – (a) normal and (b) abnormal image samples.

degree of classification accuracy. Moreover, the interpretation in binary classification is
distinguished in a way that abnormal as “1” and normal as “0”. The abnormal categoriza-
tion denotes that the radiograph consists of either fractures or any other abnormalities.
Meanwhile, in normal categorization, the radiographs represent that the image is normal.
The Figure 2 presents the sample images of the LERA dataset.

3.2. Pre-processing techniques

The image pre-processing method is applied in the input image to predominantly enhance
the radiographic image’s eminence, the edges that denote the possible fractures. This
study’s proposed method involves a one-hot encoding-based pre-processing approach to
rectify the missing data issues.

One-Hot Encoding The one-hot encoding is a type of encoding method and is
considered to be the most popular target encoding technique. The main advantage of
this strategy is that it is a sparse vector, which is used in calculating the similarities or
distances between the features for efficient classification. Here, one element is set to 1,
and all other elements are set to 0. Contradictory to the other existing algorithms, the
one-hot encoding method treats all missing values as a new class. This tends to mitigate
the interference with data structure in the simulation.
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3.3. Train and test split of data

The input LERA dataset consisting of normal and abnormal images of the lower ex-
tremities of the human body is split into train and test datasets. The splitting of data
is done with 80% of train data and 20% of test data. The splitting of input data is such
that training data gains more than two-thirds of the entire data. The training dataset is
used in training the classifier employed in classifying the normal and abnormal images.
The test data are applied to compute the performance measures.

3.4. Classification

3.4.1. EfficientNet model

The conventional EfficientNet is a kind of NN which uses the compound scaling method
to produce better system performance. These existing models target to improve the
performance and computational efficiency by subsiding the Floating Point Operations
Per Second (FLOPS) and several parameters. Scaling up mechanisms involved in Ef-
ficientNet are Neural Architecture Search (NAS) and compound scaling. Initially, the
baseline network is designed by performing NAS, a method used to automate the design
of neural networks. It efficiently optimizes both efficiency and accuracy as measured
on a FLOPS basis. The two parts present in EfficientNet are created using a baseline
with NAS and compound scaling to increase the performance. Compared with other
state-of-arts models, the EfficientNet significantly reduces the computational resources
required to train the classifier. The scaling method involved in EfficientNet has shown
uniform scaling across multiple dimensions. This could be more efficient when applied to
a highly versatile architecture to improve the effectiveness of the model. When combined
with CNN, the EfficientNet involves a scaling approach and achieves significant output
in the performance.

3.4.2. MetaMag efficiency classifier

The MetaMag efficiency classifier is deployed in the proposed method, where the network
architecture involves a new scaling model known as MetaMag scaling. The other existing
CNNs randomly scale the network dimensions like resolution, dimension, and width.
The MetaMag efficiency model uniformly scales the entire image with a fixed scaling
coefficient. This tends to enhance the efficiency and accuracy of classification. In the
classification process, the MetaMag efficiency model undergoes MetaMag scaling that
uniformly scales all the dimensions of resolution, width and depth for procuring improved
performance. It systematically analyses the model scaling and identifies the balancing
network using a simple yet highly effective compound coefficient.
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MetaMagnify scaling
The scaling factor, denoted as ϕ, allows for adjustments in the depth of the network.
When ϕ is increased, the model becomes deeper and more robust, enhancing its capabil-
ity to extract complex features. This is advantageous for tasks that demand sophisticated
feature extraction, such as intricate pattern recognition in images or nuanced language
understanding. Conversely, reducing ϕ results in a shallower model. This can be ad-
vantageous for simpler tasks or scenarios where computational resources are restricted.
Shallow models are effective for straightforward classification tasks or when rapid in-
ference speed is crucial. Furthermore, smaller values of ϕ facilitate faster training and
reduce memory requirements. This makes them particularly suitable for environments
where efficiency in model development and deployment is prioritized.

Unify normalization
The use of Unify Normalization offers a way to maintain the benefits of Batch Normal-
ization (BN) while addressing its challenges with large activation memory requirements
due to the need for sizable batch sizes. This is particularly relevant in memory-intensive
AI accelerators that rely on local memory for enhanced speed and energy efficiency,
despite tighter memory constraints. Additionally, our approach aims to preserve BN’s
normalization advantages while circumventing its regularization effects when they prove
counterproductive. To adapt the EfficientNet architecture effectively, it is essential to
adjust the initial scaling operations within the network. This ensures that scaling factors
play a significant role in shaping the overall network structure. Furthermore, modifying
batch normalization layers to accommodate variations in network width and depth is
crucial for maintaining effective normalization during training.

Besides, this work focuses on improving the practical efficiency of the traditional
EfficientNet model by using the unified normalization that reduces the computational
loss and inexpensively fine-tuning at higher resolution. It eventually increases the size of
the image and aids in obtaining finer details of the input image. This helps the classifier
distinguish the input images into two categories: normal as 0 and abnormal as 1. The
input data from the training dataset is fed into the input layer of the MetaMag efficiency
classifier and then to the MetaMag scaling layer. By using this layer, the finer details of
radiographic images are obtained that precisely classify the abnormalities found in the
bone. The process involved in the MetaMag efficiency model is shown in Figure 3.

The MetaMag efficiency model uses the MetaMag scaling method that involves a
series of fixed factors to scale the dimension of the network in a uniform manner based
on resolution, depth, and width. The building block i is defined as a function of Ai+1 =
Bi(Ai), where Bi denotes the operator and Ai represents the input tensor, and Ai+1
is the output tensor. Thus, the CNN, denoted symbolically as n, is characterized by
different layers as given in equation (1),

n = Bqm
m ⊙ · · · ⊙ Bq2

2 ⊙ Bq1
1 (A1) = ⊙i=1,...,mBi(A1) , (1)
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Fig. 3. Flow diagram of the proposed MetaMag efficiency classifier.

where ⊙ is the Hadamard product, that is, the element-wise multiplication of two ma-
trices, and the superscript qi denotes the hyperparameter vector of Bi. This epitomizes
the architecture of building block i, which is not able to be determined from training.
Further, m signifies the number of layers present in the network. Further on, the hyper-
parameter matrix q with a building block defined in CNN is shown in equation (2),

n = ⊙i=1,...,m Bqi

i (ACi,Di,Hi,Wi) . (2)

The proposed modified EfficientNet model aims to resolve the optimization problem
formulated in equation (3),

qoptimum = arg max
q

Accuracy (n(q)(ACi,Di,Hi,Wi
)) , (3)

where q is the matrix of hyperparameters of the whole network, formed by vectors
qi of the subsequent operators Bi. The denotation n(q) underlines the dependency
of the network on its parameters. Therefore, the result of a search procedure of the
modified EfficientNet model is the optimal hyperparameter matrix q. The architecture
of the proposed modified EfficientNet model is displayed in Figure 4. In this structure,
the convolution pooling layers consist of extracted features from the input radiographic
images and conv blocks that process the feature maps. Further, the unified normalization
is performed at the end of the network.

The modified conv layer i is defined by the function Yi = Bi(Xi), in which Bi is the
operator, Xi denotes the input tensor, and Yi represents the output tensor. The tensor
shape for the function is given by Xi = (Hi, Wi, Ci), where Wi and Hi are the spatial
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Fig. 4. Model architecture of the proposed MetaMag efficiency model

dimensions. Further, Ci signifies the channel dimension. Moreover, the modified conv
layer is characterized by a list of composed layers, as shown in equation (4),

n = Bk ⊙ · · · ⊙ B2 ⊙ B1(X1) = ⊙j=1,...,k Bj(Xj) . (4)

All layers in each stage of modified layers possess the same convolutional type, while
the first layer alone performs the down-sampling method, and the modified conv layer
is represented in equation (5),

n = ⊙i=1,...,m Bpi

i XHi,Wi,Ci , (5)

where ⊙i=1,...,m Bi is repeated pi times in stage i, and Hi, Wi, Ci is the shape of input
tensor X of layer i. To find the best layer architecture Bi, the model involved MetaMag
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scaling that expands the network length pi, width Ci, and resolution Hi, Wi without
altering the predefined Bi in the baseline network. Thus, by fixing the Bi, the MetaMag
scaling simplifies the design issues for new resource constraints. However, to improve the
accuracy of the proposed model for any resource constraints, an optimization problem
is formulated in equation (6),

noptimum = max
d,w,r

Accuracy (n(d, w, r)) , (6)

where
n(d, w, r) = ⊙Bd.Li

i (Xr·Hi,r.Wi,r.Ci
) ,

here, (d, w, r) denote the depth, width and resolution of the scaling network, and Li is
the layer at the stage i. Specifically, the modified conv layer captures more complex
features and gets generalized better in new tasks. But, this network faces difficulty due
to vanishing gradient issues. So, the computation is reduced by lowering the training res-
olution and thus inexpensively fine-tuning at higher resolution. This method is done by
implementing the unifying normalization mechanism to normalize activations through-
out the network. It combines statistics from LN (Layer Normalization) and BN (Batch
Normalization), adapting different batch sizes and model depths. This ensures stable
and efficient training across the proposed MetaMag efficiency model. The unified nor-
malization is applied on X, which denotes the unnormalized pre-activations to generate
normalized pre-activations Q..c before a nonlinearity Θ and an affine transform finally
produce the post-activation function P..c, as follows

Q..c = X..c − µc√
σ2

c + ϵ
, (7)

P..c = Θ(γcQ..c + αc) , (8)

where c is the index of the channel,
√

σ2
c , µc denote the standard deviation and mean of

X, and αc, γc are the unified normalization’s shift parameters and scale in each channel.
The ϵ represents the unified normalization’s numerical stability constant, and ’.’ denotes
a placeholder for an index. Thus, this foundational principle of unified normalization is
significant for successful scaling to deep and large models. Further, the proxy-normalized
activation step is applied in equation (8). This step tends to normalize Θ(γcQ..c +
αc), where Q..c ∼ N(α..c, (1 + γc)2) is the proxy variable with variance (1 + γc)2 and
mean α..c. These variables are subjected to weight decay to denote that Q is close to
normalized. Hence, the unified normalization for each element and the channel is given
by equations (9) and (10) (some index placeholders dropped for simplicity),

Q..b = X..b − µb√
σ2

b + ϵ
, (9)

Pb = Θ(γcQ..c + αc) − Eγc
[Θ(γcQ..c + αc)]√

Varγc [Θ(γcQ..c + αc)] + ϵ
, (10)
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Fig. 5. Examples of original normal images present in the data set.

where b denotes the batch element for the proxy-normalization of Pb; further, Qc ∼
N(αc, (1 + γc)2), ϵ are numerical stability constants of unified and proxy normalizations,
γc is the Gaussian proxy variable, and Eγc

represents the measures of central tendency for
the variable γc. On the other hand, the inclusion of unified normalization at the network
leads in a full-batch setting to add the following operations as shown in equation (11),

yl
a,c =

yl
a,c − µc(X l)

σc(X l) , yl
a,c = γl

cyl
a,c + αl

c , (11)

where l is the layer, σc(X l) and µc(X l) are the standard deviations and mean of X l, and
αl

c, γl
c denote the shift parameters and channel-wise scale. Finally, the output is driven

to the avg max pooling layer and then collected from the dense layer.

4. Results and discussion

The effectiveness of the proposed MetaMag efficiency model has been validated by using
four different performance measures based on different lower extremity images from the
LERA dataset. The experiment was carried out on the Google Colab Notebook Pro
version. In total 50 epochs were used in each fold. This section deliberates the results
produced by the proposed method in classifying the image samples.

4.1. Exploratory Data Analysis

The Exploratory Data Analysis (EDA) is specifically used to analyze and examine the
LERA dataset and thus summarise the main attributes of the dataset. It also visualizes
the distribution of data, discovers patterns, locates outliers, and detects correlations.
The figure 5 represents the original images present in the LERA dataset.
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4.2. Performance measures

The outcome of the proposed system is attained by evaluating the measures: accuracy,
precision, recall, specificity, and F1-score. With this output testing accuracy, the im-
provement of the system is analyzed. Below, TP, TN, FP and FN denote the numbers
of true positive, true negative, false positive, and false negative classifications. The
probabilities are estimated by the respective relative frequencies.
Accuracy The accuracy is considered as the primary evaluation index in the classi-

fication process, which refers to the proportion of input samples that are classified
correctly. The accuracy is evaluated as follows

Accuracy = TP + TN
TP + TN + FP + FN . (12)

Precision Precision denotes the probability of the sample that is truly positive among
all the samples that are identified to be positive and is given by

Precision = TP
TP + FP . (13)

Sensitivity (Also called recall; these two names are used interchangeably in the paper,
depending on the convention used in the reference sources.) It is the probability of
being identified as a positive sample within the actually positive samples. It is denoted
as

Sensitivity = TP
FN + TP . (14)

Specificity It is the probability of being identified as a negative sample within the
actually negative samples. It is denoted as

Specificity = TN
TN + FP . (15)

F1-score The F1-score is calculated as the harmonic mean of recall and precision and
is given by

F1-score = 2TP
2TP + FP + FN . (16)

The above evaluation metrics, or indexes, are used in analyzing the performance of the
proposed MetaMag efficiency model.

4.3. Performance analysis

To better verify the efficiency of the proposed model, the obtained results of abnormal-
ities in the body’s lower extremities are shown in Figure 6.

From figure 6 it is projected that the proposed model can segment the abnormal part
of the image by visualizing it through contrast enhancement. Thus, generalizability was
effectually recognized showing a lack of significant decrement in performance.
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Fig. 6. Abnormalities identified by the proposed MetaMag Efficiency model. Left: original images, right:
processed images. In the upper image, the blue color shows high intensity of the abnormality,
whereas in the lower image, the red color shows high intensity of the abnormality.

4.4. Internal results

By evaluating the internal test set, the precision, recall, F1-score, and accuracy of the
proposed MetaMag Efficiency technique and traditional EfficientNet model are gener-
ated. The outcomes are shown in Table 2 and the corresponding graphical representation
is displayed in Figure 7.

It is observed that the traditional EfficientNet model produces an accuracy rate of
85%, precision of 94%, recall of 78%, and F1-score of 85%. While, the proposed MetaMag
Efficiency model produced an accuracy of 95%, precision of 95%, recall of 97%, and F1-
score of 96%. This indicates the improved performance of the proposed method by
implementing MetaMag scaling and Unify normalization methods. Figure 8 illustrates
the graphical representation of model accuracy and loss.

From figure 8, it can be concluded that the proposed method has produced increased

Machine GRAPHICS & VISION 33(1):69–93, 2024. DOI: 10.22630/MGV.2024.33.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.4


86 Fracture fusion: Revolutionizing the recognition of bone fractures. . .

Tab. 2. Outcome of the proposed and the traditional model.

Model Precision Recall F1-score Accuracy

Proposed 0.95 0.97 0.96 0.95
EfficientNet 0.94 0.78 0.85 0.85

Fig. 7. Graphical representation of performance analysis of the proposed MetaMag Efficiency model
and the traditional EfficientNet model.

Fig. 8. Accuracy and loss prediction of the proposed MetaMag Efficiency model.
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Fig. 9. Data derived from the confusion matrix and ROC for the proposed MetaMag Efficiency model.

accuracy. Both the training curve and validation curve correlate with each other pro-
jecting that the train dataset and test dataset are most probably similar to each other.
Further, the data derived from the confusion matrix are drawn for the proposed method
to analyze effectiveness. The model loss indicates how the model’s prediction was on
the input samples. If the loss is minimal, then the efficacy of the proposed approach
will be enhanced. In Figure 8, the x-axis denotes the loss and the y-axis signifies the
number of model training epochs. It is noted that the validation accuracy is higher than
the training accuracy for some epochs. Both the training and validation curve follows a
uniformity as the number of epochs increases. This denotes that the loss decreased with
an increase in accuracy. The data derived from the confusion matrix and the ROC of
the proposed model are represented in Figure 9.

The confusion matrix, also known as the error matrix, represents the counts from
predicted and actual values. The True Positives value represents the number of positive
samples that are accurately classified, while True Negatives denotes the number of neg-
ative samples categorized correctly. False Positives value signifies the number of actual
negative samples classified as positive, and False Negatives is the number of actual pos-
itive samples classified as negative. From Figure 9 it is inferred that 144 samples were
correctly classified as normal images, and 104 abnormal samples were classified accu-
rately. Only 4 normal samples were misclassified as abnormal, and 8 abnormal samples
as normal. With minimum error, the precision of the proposed approach is improved.
Additionally, the area under the ROC curve of the proposed model is found to be 0.93,
indicating improved performance. Further, the performance of the conventional Effi-
cientNet is also analyzed. The data derived from the confusion matrix and ROC of the
traditional EfficientNet model are shown in Figure 10.

The data derived from the confusion matrix of the traditional EfficientNet model
is analyzed, and it is found that 116 normal samples are correctly classified, and 104
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Fig. 10. Data derived from the confusion matrix and ROC for the traditional EfficientNet model.

Fig. 11. Accuracy and loss prediction of the traditional EfficientNet Model.

abnormal images are classified accurately, while 33 normal images are wrongly classified
as abnormal and 7 abnormal images are classified incorrectly as normal samples. The
count of correctly classified samples is less than the count classified by the proposed
model. Further, the area under the ROC curve of the traditional model is 0.86, denoting
decreased accuracy and performance. Then, the model accuracy and loss prediction for
the conventional method is shown in Figure 11.

The training and testing curves are partially correlated in the model accuracy plot,
denoting decreased accuracy. Further, the loss plot denotes that both the loss curve
interlinks with each other, representing increased model loss. This denotes that increased
model loss leads to reduced performance of the model.

Machine GRAPHICS & VISION 33(1):69–93, 2024. DOI: 10.22630/MGV.2024.33.1.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.1.4


S. Rajeashwari, Dr. K. Arunesh 89

Tab. 3. Comparison of the performance of the proposed model and the existing model from [18].

Model Recall Specificity Accuracy

DCNN Triquetral fracture (n=50) – 2-stage 0.96 0.88 0.92
DCNN Triquetral fracture (n=50) – 1-stage 0.96 0.64 0.80
Second fracture (n=24) – 2-stage 0.917 0.917 0.917
Second fracture (n=24) – 1-stage 0.917 0.917 0.917
Proposed 0.97 0.93 0.95

4.5. Comparative analysis

The comparison of the proposed method with other existing methods enumerates the
efficiency of the proposed system. Here, the study compares the existing DenseNet-161
model in terms of lower extremities’ accuracy, sensitivity, and specificity. The outcome
of the conventional model and the proposed system is exemplified in Table 3.

Table 3 indicates that the proposed model attained better values than the existing
models. It attained 95% of sensitivity, 97% of specificity and 95% of accuracy which
shows the value of the proposed efficient model. Table 4 depicts the comparative analysis
of the proposed and another existing model.

From Table 4 and Figure 12 it can be inferred that the existing DenseNet-161 model
produced an accuracy of 79%, precision of 97%, and recall of 66%. Whereas the proposed
MetaMag Efficiency model produced importantly improved overall accuracy of 95%,
precision of 95% – slightly worse, and recall of 97% – improved.

Only a few studies have focused on detecting bone fractures in DM patients. So, only
a limited comparison is provided to analyze the model’s working. Thus, from analyzing
using different evaluation indicators, it is identified that the proposed model has achieved
improved performance compared to other existing models. The basic EfficientNet model
tends to provide limited performance, whereas the proposed MetaMag efficiency model
provides improved performance due to the implementation of the MetaMag scaling and
Unify normalisation. The MetaMag scaling supports the model in enlarging the ra-
diographic image and finely detecting significant patterns of abnormalities in the bone.
Further, the unified normalization reduces the losses produced by the input samples and
thus increases the model’s efficiency.

Tab. 4. Comparison of the performance of the proposed model and the DenseNet model [30].

Model Precision Recall Accuracy

DenseNet-161 [30] 0.97 0.66 0.79
Proposed 0.95 0.97 0.95
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Fig. 12. Graphical representation of the comparison of the proposed model and the DenseNet-161
model [30].

5. Conclusion

Various deep learning methods are involved in diagnosing various diseases and have pro-
duced efficient outcomes. In that case, the previous phase concentrated on detecting
foot ulcers in diabetes mellitus (DM) patients by using the Deep Convolutional Neural
Network (DCNN) based Xception model. This approach produced improved outcomes
and aided in efficiently classifying healthy and diabetic foot ulcer (DFU) images. On
the other hand, the present phase focused on identifying fractures in diabetes patients.
DM is associated with several other factors, and delay in treatment may lead to complex
patient risks. Once a fracture occurs in diabetes patients, it is difficult to cure, and
abnormalities exploit the routine lifestyle of patients. So, early detection of fractures
can help physiologists efficiently cure the complications. Hence, the proposed approach
implemented a MetaMag efficiency model to detect and classify normal and abnormal
images from the given input radiograph images. Along with the classifier, MetaMag
scaling and Unify normalization approaches were used to effectively obtain the fine de-
tails of input samples and reduce the loss that occurred in the proposed system. The
outcomes of the proposed method produced an accuracy of 95%, compared with the
traditional EfficientNet model, which produced an accuracy of 85%. This denoted the
improved performance of the proposed MetaMag efficiency model. The study can be
further improved by using different approaches of deep learning algorithms to produce
higher classification accuracy.
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