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Abstract Recently, 3D printers have become capable of producing relatively large, high-resolution
models. Unlike simple shapes, it is becoming possible to print large complex shapes with high accuracy.
However, the data size of complex models is also large, and the slice data required for printing is also
large. Thus, in this study, we investigated reducing the data size by focusing on the characteristics of
the slice data required for 3D printing. The proposed method focuses on the continuity of each layer
and the top/bottom layers of the cross-section used to print the 3D model. Preliminary experiments
were conducted to determine whether the data size could be reduced by applying the difference method.
Here, the results obtained from the continuity were output as text data, and various metadata, e.g.,
lamination pitch data, required for printing were ZIP compressed. Then, we compared conventional
file formats as a format that can be converted as a printable file as lossless compression. The results
demonstrated that the file size can be reduced for 3D complex shapes with a large number of vertices,
which are difficult to handle. We found that the proposed difference method was effective for relatively
large files that require a general-purpose graphics processing unit to create slice data.

Keywords: 3D printing, data compression, stereolithography, additive manufacturing, sliced data,
image storage

1. Introduction

With the ongoing development of three-dimensional (3D) printers, it has become rela-
tively easy to output high-definition, large-scale fabrication objects with complex shapes,
which is difficult to do using conventional fabrication methods. Currently, 3D printers
are used in many fields [2,44,52]. However, the need to handle a wide range of high-
definition data has resulted in increased data sizes and the emergence of various file
formats depending on the printer used for output, thereby increasing the difficulty of
data handling. In addition, when creating cross-sectional views of each layer required
for printing from 3D model data, the load for analysis increases [30,34,58,59].
Generally, when printing objects with a 3D printer, the 3D data are decomposed
into two-dimensional (2D) data for each layer, and then laminated based on the stacked
2D data [30,31,49,56]. In this study, we conducted an initial verification to determine
whether it is possible to reduce the data size using lossless compression based on the
continuity of the sliced data required for 3D printing output. As a result, although this
was preliminary experiment, we found that combining the proposed method and ZIP
compression resulted in a data size that was smaller than that of the conventional large
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Fig. 1. The 3D Printing process (from [56], license: CC BY 3.0).

data format. In particular, the effectiveness of the proposed method was demonstrated
for geometries with a large number of vertices, which tend to be complex geometries.
On the other hand, we could not demonstrate the usefulness of the proposed method for
3D models with a small number of vertices. Therefore, the proposed method is effective
for compression of 3D model data that requires time for shape analysis necessary for
printing. In the future, based on this result, it is thought that even higher compression
will be possible by considering such as the symmetry of slice data.

2. Related Work

Printing high-definition, relatively large-sized objects has become easier; thus, 3D print-
ers are widely used in a variety of fields [2,44,52]. In addition, 3D printers with var-
ious output formats are currently available from multiple manufacturers, and even in-
expensive consumer grade printers are increasing in terms of both size and print defini-
tion [1,17].

However, it is becoming increasingly difficult to handle the various manufacturer-
specific data formats and the large amounts of data required for 3D printing [3, 12,21,
24,38, 46].

Therefore, in this section, we introduce the main 3D printing methods and the meth-
ods used to create the data required for printing and file formats. In addition, we identify
known problems with these existing methods.

2.1. Types of 3D printers

Various output methods are being researched and developed for 3D printers; however,
the most common method is to transform a 3D model as a layer of 2D data and then
laminate these layers in sequence (Fig. 1 [56]). Here, we introduce two common lamina-
tion methods, e.g., the fused deposition modeling (FDM) and resin printing technology
methods.
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Fig. 2. FDM printing method (from [32], license: CC BY 4.0).

2.1.1. Production of 3D objects by heat

Generally, the well-known FDM method realizes 3D printing by melting a filament in
a solid state at a high temperature and stacking it layer-by-layer through a nozzle
(Fig. 2) [15,32]. The FDM method is commonly used, including by individual users,
and it has become increasingly affordable since the patent expired in 2009 [35,50]. Cur-
rently, filaments of various materials are readily available, and it is possible to change the
hardness and the like according to the use purpose [15]. However, although the structure
is very simple, this method is susceptible to various output errors, e.g., heat shrinkage
and prints detaching from the build platform, depending on the filament material and
the ambient temperature of the print environment [42].

2.1.2. Production of 3D objects by ultraviolet light

Here, ultraviolet-curable resin is cured in a layer-by-layer manner by surface irradiation
of ultraviolet light to produce a modeled object. 3D printing using resin primarily
includes stereolithography apparatus (SLA), digital light processing (DLP), and liquid
crystal display (LCD) depending on the ultraviolet irradiation method (Fig. 3) [25].
With the SLA method, an ultraviolet laser is applied from the bottom or top of a tank
filled with photocurable resin for curing. The SLA involves tracing and curing a layer
based on the 2D image as a point, and after creating a surface, the surface of the next
layer is created in the same way (Fig. 4a) [53]. The DLP method replaces the laser
with a projector and applies ultraviolet rays as a digital image. Unlike lasers, the DLP
method can irradiate a wide range of ultraviolet rays simultaneously; thus, high-speed
output is possible (Fig. 4b) [53]. The LCD method cures using an ultraviolet light as
the backlight of an LCD panel, and this method can handle more precise modeling by
using a high-resolution panel [19,37].

A primary characteristic of these methods is that they require cleaning and secondary
curing as postprocessing due to the resin characteristics; however, they can achieve a
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Fig. 3. FDM printing method (created by the author on the basis of [25]).
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Fig. 4. Differences between (a) SLA and (b) DLC curing methods (from [53], license: CC BY 4.0).

cleaner finish than the FDM method without leaving stacking marks (Fig. 5) [13]. Note
that the LCD method is frequently used due to its ability to print at high speed from
surface emitting and low cost due to its simple structure. In addition, the LCD system
has advanced to higher resolutions, and affordable consumer grade 4K and 8K devices
are available.

2.2. Generating printing data

Generally, in the 3D printing process, a cross-sectional view is first created from the
model data using slicer software [20,34,59]. In the following, we describe the 3D data
file format required for printing and how to create 2D data using slicer software.
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Fig. 5. Differences in output results between (a) FDM and (b) SLA methods (from [13]; available also
from a number of other blogs).
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Fig. 6. STL file specification (created by the author on the basis of [16]).

2.2.1. Production of 3D objects by ultraviolet light

To create a 3D object, it is first necessary to model the 3D data. Various software
tools are available for 3D modeling, from freely available software to high-performance
commercial software. In addition, there are various file formats for the 3D data; however,
the STL and OBJ formats are widely used because they are highly versatile [11,40].
The STL and OBJ formats are based on vector information, e.g., vertex information;
thus, the data size is not related to the size of the object (Fig. 6). However, the amount
of data increases for precise shapes, which inevitably leads to increased data sizes [29,30].
In other words, due to the high-definition of 3D printers, their use has increased, and
the data size tends to increase even with this format, which is vector information [27].
The size of the data to be printed varies greatly depending on the size and lamination
pitch of the production (Fig. 7). For example, if the stacking width is 100 pm, which is
common, 1000 stacks are required to print a 10 cm object, which means that 1000 cross-
sectional views must be generated. In recent years, it has become possible to achieve a
lamination process of 25 um or less, which inevitably increases the amount of data [26].

2.2.2. Creating slice data for printing

As mentioned previously, 3D printers create 3D objects by stacking layers; thus, it is
necessary to create cross-sectional views corresponding to each layer from the model data
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Fig. 8. Intersection between a straight line and a plane (from [23], license: CC BY 4.0).

(Fig. 1) [34,56,59]. Generally, slicer software is used to create a cross-sectional view that
is compatible with a given 3D printer; however, some modeling software has a slicing
function that creates a cross-sectional view [9].

Various methods can be used to create a cross section for 3D printing; however, the
most common method is to use the intersection of a plane and a straight line (Fig. 8) [23].
In addition, the slicing algorithm using the intercept theorem for triangular mesh loca-
tion information has also been studied [51]. Furthermore, a similar study is developing
slice algorithm that utilizes the geometric topology information of the STEP model
conforming to ISO10303 [54].

However, it has been demonstrated that the process of creating cross sections is
generally time consuming. Recently, as the resolution has increased, converting 3D data
to 2D data incurs an extremely long processing time; thus, methods that use a general-
purpose graphics processing unit (GPGPU) are being actively investigated [20,34,59].

2.2.3. Slice data file format

The model data are converted into multiple pieces of 2D image data by the slicer software;
however, when outputting, it is necessary to select a file format that is suitable for
the given 3D printer. Common slicer software used for conversion, e.g., CHITUBOX,
supports a wide range of formats, including PWS and CWS, which are used by several
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Fig. 9. CWS file format in which the image file and print settings file are ZIP compressed.

common 3D printers, e.g., ELEGOO, Anycube, and Flashforge printers, as well as the
more generic SLC [12,43]. There is also a general-purpose storage method in which sliced
images are compressed in ZIP format with various information included, e.g., lamination
pitch [4]. Here, the 2D data can be saved as a raster format image, e.g., CWS format
(Fig. 9), or saved by internal and external boundary polylines, e.g., SLC files [10].
Generally, when printing a 3D object from multiple images, specific information is
required, e.g., lamination pitch; thus, a metadata file containing the information required
for printing is frequently added (Fig 10). However, some devices can print 3D objects
directly from multiple 2D image data by setting them at the time of printing [41,57].

2.3. Template Matching

Template Matching is one of the famous and fundamental Computer Vision technique
for Object Detection/Recognition. Via Template Matching, the computer figures out
whether the test image contains a given template in it or not [36]. In most situations
the sum of absolute differences (SAD) and Sum of squared differences (SSD) are used as
similarity measures to find the best similar block [48].

2.3.1. Pixel Differencing method using SAD

SAD is a technique for evaluating the similarity between two same size regions, and
widely used in stereovision, optical flow, motion estimation and so on [45]. The total
difference between the two signatures is calculated by adding the absolute value of dif-
ferences between the samples. The match with the smallest total difference is taken as
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Fig. 10. Content of files required for printing (created by the slicer from model images). (a) Image data
and metadata in print files. (b) Content of the metadata generated by the slicer.

best [14]. This method can be expressed as follows:

M N
SSAD(xay) = ZZ‘T(IL’,ZJ)*I(-T‘FU,ZJ‘F’U) )

where M is size of rows in reference image and N is size of column while » and v are
variable, shift component along z-direction and y-direction, respectively. T'(-,-) and
I(-,-) represent the value of the pixel at a location. If the images exactly match, the
result will be zero [33].

2.3.2. Pixel differencing method using SSD

SSD is one of measures of match that is based on pixel by pixel intensity differences
between the two images [47]. It calculates the summation of squared for the product of
pixels subtraction between two images [55]. This method can be expressed as follows:

SSSD(xay) = ZZ (T(x,y) - I(x +u,y+ U)>2 .

rz=1y=1

The SSD score, like the SAD score, must be zero if the images are the same, pixel by
pixel.
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3. Proposed Method

In this study, as an initial verification, we perform a data compression method that fo-
cuses on continuous data unique to 3D printers. Specifically, we target stereolithography,
which can high-resolution products, and we attempted to perform lossless compression
that can be converted into printable data.

Generally, the data printed by a 3D printer are characterized by relatively similar
upper and lower layers. In addition, the objects floating in the air cannot be directly
printed by a 3D printer because they must be suspended from another object that serves
as a base. Therefore, due to these characteristics, as an initial experiment, we verify
whether it is possible to reduce the data size of the 3D model required for printing.

Here, in consideration of versatility, the input data were 2D slice image data and the
metadata required for printing obtained from a slicer. Thus, the slice data and meta-
data were converted from the 3D model by the slicer in advance. This was a preliminary
experiment; thus, we output the intermediate results as text data to facilitate verifica-
tion of the proposed method. Finally, the results of the proposed method, which were
compressed in ZIP format including metadata, were compared with other file formats
(Fig. 11).

3.1. Creating difference data from sliced data

The slicer converted the 3D data into 2D data for each layer, and scanned the generated
2D data for each XY coordinate (Fig. 12). Here, the scanned image data contained binary
information; thus, it was possible to easily obtain internal and external information
scanned (Fig. 13). In other words, it was possible to identify positions that change
from outside to inside or inside to outside; thus, the differences in positions were stored
sequentially. In this verification, the difference of each X coordinate was obtained in
order along the y-axis (Fig. 14), and the same process was performed for all layers to
obtain the difference data at each layer.

As mentioned previously, objects fabricated using a 3D printer frequently have ap-
proximate top and bottom layers, and it is impossible to print objects that are suspended
in air that do not touch the print surface or are not connected to the object being printed.
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Thus, some data will be continuous even in the upper and lower layers. Therefore, af-
ter obtaining the difference data in each layer, the difference based on the Z-axis was
considered. Note, as this study is an initial validation, it was decided to use the index
of the data in the upper layer if it is equal to the upper layer (Fig. 15 and Fig. 16). In

other words, this is the case of perfect matching in SSD, and this method is an extended
solution.
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Fig. 14. Numericalization of continuous data for each layer.
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3.2. Compression of numerical data by proposed method including metadata

For the final comparison, the text data created by the proposed method and other data,
e.g., laminate pitch data obtained by the slicer, were combined and compressed together
in ZIP format, and compared with each file format (Fig. 11). Note that this propose
method utilizes lossless compression; thus, it can be changed to a format that can be
printed with a 3D printer, e.g., the CWS format.

4. Experiments

Based on the proposed method, we verified whether there any difference could be ob-
served in the data compression results compared with other formats. Here, the exper-
iments were conducted assuming a large print size (298 mm x 164mm x 30mm) that
can be output by a conventional optical 3D printer. Thus, the size of each experimental
3D model was increasd or decreased to the maximum size within the above range. In
addition, the lamination pitch was set to 50 pm. Note that the size of the STL and
OBJ files used in the experiment could be changed easily because the data are based on
coordinate information.
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Tab. 1. Specifications of experimental hardware and software.

Specification  Value

(O Windows 11 Professional (Build 22621)
Compiler Javac 19.0.1 (Oracle JDK 19)
Slicer CHITUBOX V1.8.0 Beta

Nova3D Plugin 1.07
anycubic_plugin

CPU Intel Core i9 - 12900H (2.5 GHz)
GPU GeForce RTX 3070 Ti Laptop
Memory 64 GB (DDR5)

As mentioned earlier, printing requires a sliced 2D image of each layer. Generally,
there are several software programs that convert such 3D data into 2D images, but this
time, we decided to use CHITUBOX, which is freely available and compatible with many
3D printers [12]. CHITUBOX, like a general slicer, also generates configuration files nec-
essary for printing. Configuration files other than images created with the CHITUBOX
are also saved together with the data in the proposed method during ZIP compression.
Therefore, in the evaluation, we will compare proposed file format with other file formats
as printable files. The file formats to be compared were OBJ files or STL files that are
model data, and the formats used by general stereolithography 3D printers Anycube,
Phrozen, NOVA3D, and general-purpose SLC formats.

In this experiment, compression was applied and validated on eight shapes. The
experimental hardware and software are described in Tab. 1. In the following results, the
results of the proposed method are referred to as apply ZIP after the proposed method.
As mentioned earlier, the result of the ZIPping process applied after the proposed method
can be easily decompressed and converted to a printable file because it contains the
control file for the 3D printer.

4.1. King kong bust

The complex shape model created in OBJ format shown in Fig. 17 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 17 is shown in Fig. 18. The
difference in data size for each file format is shown in Tab. 2. Note that this model
contained 7,560,074 vertices and 2,985 layers.

4.2. Triceratops

The complex shape model created in STL format shown in Fig. 19 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 19 is shown in Fig. 20. The
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Fig. 17. Complex King kong bust 3D model [28] (Royalty Free No Ai License from “cgtrader | General
Terms and Conditions | 21A. Royalty Free License”).

Fig. 18. Part of the cross-sectional view of the King kong bust 3D model.

difference in data size for each file format is shown in Tab. 3. Note that this model
contained 1278259 vertices and 2198 layers.

Tab. 2. Data size of various file formats and data size after compression by the proposed method (King
kong bust: 7560074 vertices and 2985 layers).

File type File size [bytes]
OBJ (original) [28] 529351777
OBJ (after ZIP compression) 158 387 269
PWS 562164661
Photon 566937601
ZIP (2D image layers + metadata) 60117977
slc 204 691 406
phz 611932743
CWS 56439 318
pPWX 56 940 340
SVgX 381507904
Apply ZIP after the proposed method 14730722
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Fig. 19. Complex triceratops 3D model [18] (Royalty Free No Ai License from “cgtrader | General Terms
and Conditions | 21A. Royalty Free License”).

Fig. 20. Part of the cross-sectional view of the triceratops 3D model.

Tab. 3. Data size of various file formats and data size after compression by the proposed method (Tricer-
atops: 1278259 vertices and 2198 layers).

File type File size [bytes]
STL (original) [18] 127829284
STL (after ZIP compression) 54745 386
PWS 414 868 236
Photon 418408 591
ZIP (2D image layers + metadata) 54211661
slc 69585774
phz 453295532
CwWS 51863 803
pwx 46 609 868
SVgX 129712 549
Apply ZIP after the proposed method 20520 640
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Fig. 21. Complex Plaster cast of teeth 3D model [7] (license: CC BY 4.0, by Artec 3D).

Fig. 22. Part of the cross-sectional view of the Plaster cast of teeth 3D model.

4.3. Plaster cast of teeth

The complex shape model created in OBJ format shown in Fig. 21 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 21 is shown in Fig. 22. The
difference in data size for each file format is shown in Tab. 4. Note that this model
contained 999 998 vertices and 2 688 layers.

4.4. Motorcycle engine HD

The complex shape model created in OBJ format shown in Fig. 23 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 23 is shown in Fig. 24. The
difference in data size for each file format is shown in Tab. 5. Note that this model
contained 999 808 vertices and 3422 layers.

4.5. Giraffe skull

The complex shape model created in OBJ format shown in Fig. 25 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 25 is shown in Fig. 26. The
difference in data size for each file format is shown in Tab. 6. Note that this model
contained 744 647 vertices and 2 540 layers.
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18 Verification of data compression focusing on continuity in 3D printing

Tab. 4. Data size of various file formats and data size after compression by the proposed method (Plaster
cast of teeth: 999 998 vertices and 2 688 layers).

File type File size [bytes]
OBJ (original) [7] 81400987
OBJ (after ZIP compression) 23484543
PWS 505540271
Photon 509593 239
ZIP (2D image layers + metadata) 38397319
slc 66177 342
phz 550203 080
CcwWS 34151 966
pwx 52675512
SVEX 120725818
Apply ZIP after the proposed method 7493959

Fig. 23. Complex Motorcycle engine HD 3D model [6] (license: CC BY 4.0, by Artec 3D).

Fig. 24. Part of the cross-sectional view of the motorcycle engine HD 3D model.
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Tab. 5. Data size of various file formats and data size after compression by the proposed method (Mo-
torcycle engine HD: 999 808 vertices and 3422 layers).

File type File size [bytes]
midrule OBJ (original) [6] 83283059
OBJ (after ZIP compression) 30086 007
PWS 648374 184
Photon 653719793
ZIP (2D image layers + metadata) 63941331
slc 89001 582
phz 712843 758
cws 62687086
pwx 85320032
SVgX 164 447945
Apply ZIP after the proposed method 26 801 339

Fig. 25. Complex giraffe skull 3D model [5] (license: CC BY 4.0, by Artec 3D).

4.6. Model house for train free 3D print model

The complex shape model created in OBJ format shown in Fig. 27 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 27 is shown in Fig. 28. The

Fig. 26. Part of the cross-sectional view of the giraffe skull 3D model.
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Tab. 6. Data size of various file formats and data size after compression by the proposed method (Giraffe
skull: 744647 vertices and 2540 layers).

File type File size [bytes]
OBJ (original) [5] 61013447
OBJ (after ZIP compression) 20083573
PWS 475426789
Photon 479 369 665
ZIP (2D image layers + metadata) 29136 537
slc 45616214
phz 510800838
CcwWS 27715959
pPWX 44 495 436
SVgxX 81846 149
Apply ZIP after the proposed method 7718206

Fig. 27. Complex model house for train free 3D print model [39] (Royalty Free No Ai License from
“cgtrader | General Terms and Conditions | 21A. Royalty Free License”).

difference in data size for each file format is shown in Tab. 7. Note that this model
contained 339 834 vertices and 3371 layers.

Fig. 28. Part of the cross-sectional view of the model house for train free 3D print model.
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Tab. 7. Data size of various file formats and data size after compression by the proposed method (Model
house for train free 3D print model: 339 834 vertices and 3371 layers).

File type File size [bytes]
OBJ (original) [39] 55109933
OBJ (after ZIP compression) 14153127
PWS 634917533
Photon 639893 543
ZIP (2D image layers + metadata) 20279 624
slc 24930638
phz 688 854 398
CcwWS 19942696
pwx 68048 184
SVEX 47438712
Apply ZIP after the proposed method 1184268

Fig. 29. Complex turbine 3D model [8] (license: CC BY 4.0, by Artec 3D).

4.7. Turbine

The complex shape model created in OBJ format shown in Fig. 29 was used for veri-
fication, and a portion of the cross-sectional view of Fig. 29 is shown in Fig. 30. The
difference in data size for each file format is shown in Tab. 8. Note that this model
contained 150 002 vertices and 1856 layers.

4.8. Stool

The complex model created in OBJ format shown in Fig. 31 was used for verification,
and a portion of the cross-sectional view of Fig. 31 is shown in Fig. 32. The difference in
data size for each file format is given in Tab. 9. Note that this model contained 106 702
vertices and 4 237 layers.
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Fig. 30. Part of the cross-sectional view of the turbine 3D model.

Tab. 8. Data size of various file formats and data size after compression by the proposed method (Tur-
bine: 150002 vertices and 1856 layers).

File type File size [bytes]
OBJ (original) [8] 15657 744
OBJ (after ZIP compression) 5564 081
PWS 352112095
Photon 355137383
ZIP (2D image layers + metadata) 55480 606
slc 27272182
phz 389967957
CwWS 53156 143
pwx 50088630
SVEX 50166 142
Apply ZIP after the proposed method 22291 844

Fig. 31. Complex stool 3D model [22] (Royalty Free No Ai License from “cgtrader | General Terms and
Conditions | 21A. Royalty Free License”).

Machine GRAPHICS & VISION 33(2):3-28, 2024. DOI: 10.22630/MGV.2024.33.2.1.


https://www.cgtrader.com/pages/terms-and-conditions#royalty-free-license
https://www.cgtrader.com/pages/terms-and-conditions
https://www.cgtrader.com/pages/terms-and-conditions
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.2.1

S. Kodama 23

Fig. 32. Part of the cross-sectional of the stool 3D model.

Tab. 9. Data size of various file formats and data size after compression by the proposed method (Stool:
106 702 vertices and 4237 layers).

File type File size [bytes]
OBJ (original) [22] 15616 745
OBJ (after ZIP compression) 4096 359
PWS 810316 247
Photon 816776 523
ZIP (2D image layers + metadata) 109 642 159
slc 45733614
phz 901 592107
CWS 115805120
pwXx 131373624
svgx 87396 109
Apply ZIP after the proposed method 50387 383

5. Discussion

For complex shapes with a large number of vertices, the proposed method obtained
a higher compression ratio than the compared file formats. This is due to the large
number of vertices required to print complex shapes, resulting in large original file sizes.
However, we found that the proposed method was not necessarily effective for shapes
with a small number of vertices. For files such as OBJ and STL, which create models
based on vertex information, the file size is generally smaller when the number of vertices
is small. Therefore, in the case of a file in a general printing format that is saved as a
raster image for each layer, the file size will be larger than data with a small number
of vertices. In other words, in such a file with a small number of vertices, the proposed
method using the difference method for slice images inevitably results in a large file size.
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On the other hand, as the 3D model becomes more complex, the number of vertices
increases and the original file size also increases. In such cases, the proposed method
using the difference method based on slice data would have been more effective. Thus,
the proposed method is more effective for compressing large files that require a GPGPU
when creating slice data.

Since this is an initial experiment, the slice data are output in ASCII format like
OBJ files, but it is thought that the compression ratio can be further improved by using
a binary format. In addition, this method does not consider the features of the image
itself. It is considered that it is possible to further increase the compression ratio by
utilizing shape similarity such as symmetry.

6. Conclusion

With the recent advancements in the case of LCD 3D printers, it has become possible
to print extremely precise objects due to the high-resolution of the liquid crystal panels.
As a result, the amount of data required for 3D printing has increased significantly.
In contrast, 2D slice data, i.e., a cross-sectional view used for printing, tends to have
continuity in the data (unlike general images). Thus, by focusing on such features, a
high compression ratio can be obtained even with a method that uses a relatively simple
difference.

In this study, we performed a preliminary verification experiment, where the com-
pression results obtained by the proposed method were output as text data. In addition,
to convert the data to a printable file format, the data obtained from the slicer were
used without modification, and the final result summarized by ZIP was obtained as the
compression ratio. We found that the proposed difference method is effective; thus,
it is considered possible to improve the compression ratio further by applying a new
compression method, e.g., a binary format.

Currently, the proposed method is effective for data with a large number of vertices
that may require GPGPU processing for analysis. In other words, it is effective for large
files; however, in future, we would like to improve the compression ratio for small files
with a relatively small number of vertices.
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Abstract In this paper we propose a novel algorithm based on the use of Principal Components
Analysis for the determination of spherical coordinates of sampled cosmic ray flux distribution. We
have also applied a deep neural network with encoder-decoder (E-D) architecture in order to filter-off
variance noises introduced by sampling. We conducted a series of experiments testing the effectiveness
of our estimations. The training set consisted of 92 250 images and validation set of 37800 images. We
have calculated mean absolute error (MAE) between real values and estimations. When E-D is applied,
the number of cases (estimations) where MAE < 10 increases from 48% to 79% for 6 and from 62% to
65% for ¢, MAE < 5 increases from 24% to 45% for 6 and from 47% to 52% for ¢, MAE < 1 increases
from 6% to 9% for 6 and from 12% to 16% for ¢, where 6 is the zenith angle, and ¢ is the azimuthal
angle. This is a significant change and it demonstrates the high utility of the E-D network use and
shows the accuracy of the PCA-based algorithm. We also publish the source code used in our research
in order to make it reproducible.

Keywords: cosmic-ray shower, spherical coordinates, detector grid, Principal Component Analysis,
Encoder-Decoder network.

1. Introduction

The ultra-high-energy cosmic radiation reaching the Earth’s atmosphere is extensively
studied because of its still unknown sources and mechanisms of acceleration as well as be-
cause of the implications for the dynamics of the atmosphere, life on Earth, interferences
with electronic systems and even possible correlations with seismic phenomena [25], to
name just a few [5]. Practical exploration of these phenomena is based on observations
obtained from specialized detectors capable of detecting secondary jets produced in the
atmosphere and reaching the Earth’s surface. These jets can arise due to atmospheric
collisions of either single primary high-energy particles or cosmic ray ensembles (CRE),
i.e., groups of cosmic rays generated in outer space.

Such observations are made primarily by large-scale infrastructure detectors in pro-
jects such as Pierre Auger Observatory in Argentina [48], IceCube in Antarctica [1,2]
or Baikal-GVD at Lake Baikal in Russia [6,44]. Due to their fixed location, such in-
stallations have a limited detection area. To expand the possibilities in this regard,
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observational structures involving small-scale detectors distributed around the world
have been proposed. Projects such as CRAYFIS [32], DECO [51], CREDO [9,24] incor-
porate widely available mobile devices like smartphones and webcams into the citizen
science paradigm. Projects allied within the CREDO consortium aggregate observations
obtained from a variety of simple and low-cost detectors that can be densely distributed
over a local area [29]. The novel image processing algorithms make it possible to detect
potential cosmic ray events using even off-the-shelves CMOS cameras [21].

Recently, advanced Al methods have been widely used to analyze such data. The
potential of such techniques is used both for low-level recognition of detector signals [8,
19, 37, 53] and globally to detect features and correlations for surface or distributed
detector networks [13,28,31,45,49]. The latest scientific and implementation research
allows for real-time detection of potentially anomalous particle tracks and similar particle
tracks detection in big data image datasets acquired by CMOS sensors [22,38]. We
need simulations to understand spatial distribution of showers [16,34]. In this paper,
we propose an Al-based method to disentangle the directional information from sparse
lateral distributions.

AT methods used in detection of ultra-high-energy particles are basically determined
by the types of measurement sensors that are used to detect cosmic rays. Stationary
observatories such as Pierre Auger, IceCube or Baikal-GVD use a well-defined spatial
arrangement of homogeneous detectors. For this reason, this is a fundamentally differ-
ent research problem than the one considered in our work, which is a feasibility study
aimed at proving that the jet geometry can be reconstructed with non-homogeneous
but very flexible cosmic rays detectors set-up. This set-up may consist of various types
of detectors, both industrial made and amateur constructions, with almost arbitrary
localizations which fit into the general notion of Citizen Science paradigm. The paper
proves that it is possible and our method is directly useful in the design of small-scale
complex cosmic-ray exposure (CRE) secondary flux detection systems which can be a
part of distributed cosmic ray observatories like CREDO.

To the best of our knowledge, the results presented in this work are pioneering in the
design of small-scale complex CRE secondary flux detection systems, and it is difficult
to point out research results with which to contrast our proposed method.

2. Material and methods

2.1. Muon lateral distribution

In order to generate the simulated cosmic shower, we used the approach previously
described in the paper [20]. The equation describing the muon distribution is shown in
equation (1) (muon is an elementary particle similar to the electron but with a much
greater mass). According to this equation the distribution is singular at r = 0 for typical
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values of the age parameter s, thus needs to be truncated for distances smaller than
Tmin [12,17].

( ) pu(rmin)7 oy ous 7 < Tmin » (1)
PulT) = N, I'(4.5—s) - 4
2m2 T 5-25) \ 7o 1+ . T>Timin,

where s is the age parameter [52], N, is the shower size parameter, and 7 describes the
characteristic size of the shower.

It should also be taken into account that the cosmic shower can hit the ground at
different angles, which can be defined using the spherical coordinates 6 € [0, 7/2] and
¢ € [0, 7] (r is constant), 6 is the zenith angle, and ¢ is the azimuthal angle [12]. There
is no need to consider a larger range of angles, since the distributions in them at the
ground are periodic (see visualizations in [20]). Example distributions depending on the
angles of (0, ¢) can be seen later in this paper (Figures 6, 7); a detailed analysis can be
found in [20]. The paper [20] also presents the relationship between spherical coordinates
0, ¢ and the distribution of projection of cosmic ray shower registered on ground.

Finding a pair of angles (6, ¢) on the basis of statistical analysis of the distribution of
cosmic shower particles on the earth’s surface makes it possible to determine the direction
from which the cosmic shower came. The proposition and evaluation of the algorithm for
determination of spherical coordinates of sampled cosmic ray flux distribution using data
acquired by grid of detectors in the presence of background noise is the main objective
of this paper.

2.2. Calculation of angles (0, ¢) based on analysis of cosmic ray particle dis-
tribution using Principal Components Analysis

Determining the (6, ¢) pair of angles allows us to determine from which direction the
cosmic rays came.

An Img matrix of size nxm is given, which represents a discrete measurement grid of
cosmic rays. The value in each grid field is equal to the number of particles that have been
recorded in that grid field. Suppose there is a recorded cosmic shower inside the grid with
a distribution consistent with (1) but with unknown values of (6, ¢). The Algorithm 1
allows us to estimate these unknown angles using PCA [27]. PCA is a popular and proven
technique, which in different variants allows analyzing the distribution of data depending
on angular parameters for example in geodesic [18,33,41,42] or climatological data [40].
Paper [47] reports successful application of PCA-based analysis of cosmic-ray data for
extraction of Hale Cycle. In [43] authors perform fully empirical atmospheric correction
of cosmic ray data using PCA. Because of those facts, PCA seems to be promising for
analysis of another natural phenomena like analysis of spherical coordinates of cosmic
ray flux distribution.
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Data: Input: Img — input image with dimensions nxm
Result: (0, ¢) — a pair of spherical coordinates.
// Resample image to range [0,255] making values discrete
Img = Integer(255 - (Img - min(Img)) / max(Img));
// Create empty list of points
Points «+ 0;
// Iterate through all grid points and add as many times a point with the
given coordinates as the number of times a particle has been registered
in it
for z = 0;x < n;z + + do
for y=0;y <m;y+ + do
for ¢ = 0; ¢ < Img[z,y];c+ + do
‘ Points. Append((z, y));
end

end

end

// meanl, mean2 - mean points value; vl, v2 - PCA components; exvl, exv2 -
explained variance

[mean, v0, v1, exv0, exvl] = PCA(Points);

// modify the first vector in order to have first coordinate positive

if v1][0] < 0 then

| vl=—1x%0l;

end

6 = arccos(exvl/exv0);

¢ = m — arctan2(v1[0], v1[1]);

return (0, ¢);

Algorithm 1: Estimating the angles (6, ¢) of the distribution (1).

In practice, however, we will not have such a dense measurement grid to be able
to measure the distribution of particles at discrete points in contact. Suppose we have
a square grid in which the distance between the particle detectors horizontally and
vertically is constant at d (see Figure 1. Let us denote the sampled Img grid as Img,,.

Analysis of variance based on a set of relatively distant samples might be biased. To
increase the spatial density of the samples, we can use a convolution with a Gaussian
kernel with a size proportional to the sampling d [26]. In our case, we proposed a filter
size equal to 4 - d + 1 with 0 = 0, which has a large enough diameter to cancel out the
sampling “holes” (2):

Imgy Gauss = Img ® GaussianKernel(4.q41,4.4+1) » (2)

where ® denotes convolution. For the purpose of performing variance analysis with the
Algorithm 1, it is not necessary to use a high-resolution grid. If the distribution is inside
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Fig. 1. An illustrative drawing showing a 7x 7 grid of detectors, spaced by d in both directions. The
detectors are black squares that are equally spaced along the x and y axes. A hypothetical
histogram of the density of the particle distribution is shown in the background.

the sampled area, which preserves its spatial contour, it may be possible to resampling
the original grid to a given lower resolution. This can be done using, for example, the
following proposed Algorithm 2. It allows us to create fewer samples while preserving
the sum of the detected particles.

2.3. Enhancing sampled distribution image by deep convolutional encoder-
decoder

The method proposed in the previous section for determining the parameters of (8, ¢)
consists of three steps: registration of radiation samples, Gaussian filtering (2), resam-
pling with the Algorithm 2, and estimation of angles using the Algorithm 1. We can try
to improve the reconstruction of the original particle distribution by using an encoder-
decoder (E-D) neural network [14, 15,23,46]. The role of this network will be to re-
construct the original pre-sampled signal, but after applying Gaussian filtering (2) and
rescaling with Algorithm 2. For this purpose, we used the following network:
e Encoder:
o Convolution layer with 16 3x3 filters followed by ReLU activation and max pooling 2x2;
o Convolution layer with 8 3x 3 filters followed by ReLLU activation and max pooling 2 X 2;
o Convolution layer with 8 3x 3 filters followed by ReLU activation and max pooling 2 X 2;
e Decoder:
o Convolution layer with 8 3x 3 filters followed by ReLU activation and up-sampling 2 x 2;
o Convolution layer with 8 3x 3 filters followed by ReLLU activation and up-sampling 2 X 2;
o Convolution layer with 16 3x3 filters followed by ReLU activation and up-sampling 2x 2;
o Convolution layer with 1 3x 3 filter followed by sigmoid activation.
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Data: Input: Img — input image with dimensions n xm; scale — resampling factor
(scale > 1)

Result: Img,  — resampled image.
// calculate the size of the resampled image
xSize = Integer(n / scale);
ySize = Integer(m / scale);
// initialize the resulting matrix with zeros
Img, .. = zeros(xSize, ySize);
// iterate through all grid points
for £ = 0;x < xSize;z + + do
for y = 0;y < ySize;y + + do
sum = 0;
for a = 0;a < scale;a + + do

for b =0;b < scale; b+ + do

| sum = sum + Img|(scale  z) + a, (scale * y) + b];

end
end
Img,.. [z, y] = sum;
end
end

return Img,;

Algorithm 2: Resampling with preservation of the sum of detected particles.

In training, we will use the binary cross entropy loss function. The training data
consisted of pairs:
eas an input Img filtered by (2), resampled by Algorithm 2 and scaled to discrete
(integer) range [0,255]
e as an output Img, filtered by (2), resampled by Algorithm 2 and scaled to discrete
(integer) range [0,255]
The resulting image generated by the encoder-decoder described in this section is
then subjected to the Algorithm 1 to estimate the (6, ¢) angle pair. In Figure 2 we
present a diagram that explains the proposed method.

3. Results

In this section, we will describe the validation tests of our PCA-based Algorithm 1 and
how the use of E-D network affects the resulting angle pair estimates (6, ¢).

To test the performance of our method, we specified the following particle flux param-
eters (1): IV, = 105 (corresponds to a primary particle energy of more than 10¢ eV [39]),
ro = 100 (this value is compatible with the Moliére radius in the Earth’s atmosphere at
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Physical phenomenon Data processing and analysis

Sampled jet
with background radiation

UHECR

Application Gaussian filtering
and deep encoder-decoder

Unknown spherical

coordinates Reconstructed jet

Algorithm 1,
PCA-based analysis

Principal axes

«edePe s

Spherical coordinates of cosmic ray flux distribution

Fig. 2. Diagram that explains the proposed method. Ultra-high energy cosmic ray (UHECR) with
unknown spherical coordinates generates a jet that is observed on Earth surface by the detectors.
Data registered by detectors is sampled and mixed with background radiation (noise). After
applying Gaussian filtering, deep encoder-decoder network reconstructs the original jet and
Algorithm 1 is used to calculate spherical coordinates of the cosmic ray flux distribution.

the ground level [3,4]), s = 1.3 [20]. We assumed that the particle flux is recorded over
an area of 800 x 800cm. The area is divided by a 1x1 cm grid. This means that the
initial Img image has a resolution of 800x800 (n = m = 800). Let us assume that in the
800 x 800 cm area at intervals of d = 25cm there are detectors equally spaced horizon-
tally and vertically, each with an area of 1x1cm. This means that we sample Img with
32x32 = 1024 samples (detectors) thus obtaining Imgy. We assume that each detector
is capable of recording all the radiation particles that hit it during a single event. We
have assumed the value of background radiation according to [35,36], where the muon
flux density at the earth’s surface is 1 3= Thus, we can assume that over a period
of 1 second, the background radiation density at 1cm? of the earth’s surface averages

_ 1 muons __ muons
P = %0 scm? — 001(6) s-cm? *

We conducted a series of experiments testing the effectiveness of the Algorithm 1.

1. Angle estimation based on Img with resolution 800 x 800;

2. Angle estimation based on Img filtered by (2) and resampled with Algorithm 2 to a
resolution of 80 x 80 pixels.

3. Angle estimation based on Img, filtered by (2) and resampled with the Algorithm 2
to a resolution of 80x 80 pixels.

4. Angle estimation based on Img, filtered by (2) and resampled with Algorithm 2 to a
resolution of 80 x 80 pixels and reconstructed by E-D network.
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Fig. 3. A plot of loss function value during training.

The last two cases in the list above (3 and 4) are real-life scenarios. Cases 1 and 2 are
used to check the validity of the Algorithm 1 assumptions, since in practice in these
cases we have a very densely sampled distribution, which is not very realistic.

In order to train the E-D network, we generated distributions (1) in which the angle
of € {0,2,4,...,80}, ¢ € {0,2,4,...,178} (a total of 3690 distributions). We then
discretized the distributions to an 800x800 grid by adding offsets along the x and y axes
of {0, 3, 6, 9, 12} cm. Thus, the final training set consisted of 92 250 discrete images. We
filtered the 800x800 image (2) and resampled with the algorithm 2 to resolution 80x80.
These images were the input to the E-D network. In the output we used the same
data Img,; where d = 25. We filtered Img, by (2) and resampled with Algorithm 2 to
resolution 80x80. In this case, the validation set was not needed because the validation
was done as part of the validation of the entire Algorithm 1 (see discussion below). We
used the optimization algorithm Adam [30] with learning rate = 0.001. The training
lasted 50 epochs. A plot of loss function is presented in Figure 3.

We implemented our approach in Python 3.8 using Keras/Tensorflow 2.8, scipy 1.8
and opencv-python 4.5 libraries. Significant speed-ups in generating distributions (1)
were achieved using the numba 0.56 library. The entire experiment including data gen-
eration, network training and validation Algorithm 1 on a PC computer with Intel Core
i7 3.00 Ghz; 64 GB RAM, Windows 10 OS took more than 3 days to execute. Some of
the figures were made in R 3.6 language using dplyr 0.8 library and ggplot2 3.4.

In order to test the performance of our method, we generated a validation set of
distributions (1) in which the angles § € {1, 3,5, ...,83}, ¢ € {1, 3,5, ...,179}. In addition,
we introduced a random offset of the distribution along the z and y axes in the range
of values [0,12] cm which corresponds to half the distance between the positions of the
simulated particle detectors. For each test configuration of the (6, ¢) pair, we performed
10 independent simulations (1) and background radiation with random offset values.
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There were 37800 images in total. We then applied the Algorithm 1 to each test case
1, 2, 3 and 4. The results for each pair (6, ¢) were averaged and the estimated angles
(0, ¢) are shown in Figures 4 and 5. All the results are shown in degrees.

The source codes we have written can be downloaded from [10]. That online repos-
itory contains all source codes that are required to replicate the study including data
generation script, network training, evaluation and plotting the results. All calculations
included in this work were made using source codes from that repository.

The examples of results form the presented analysis made with the Algorithm 1 are
shown in Figs. 6 and 7.

4. Discussion

The training of the E-D network, which changes in the loss function in successive itera-
tions can be seen in Figure 3 was stable. After 50 epochs, loss had a binary cross entropy
value of 0.080, which has remained virtually unchanged since epoch 40.

As can be seen in the Figures 6 and 7, the Algorithm 1 using PCA to detect the
directions along which the largest variance is found works as expected. The axes are
found with relatively small error, so that the estimation of the angle 8, which is calculated
directly from the first axis of the PCA, is precise. In the case of the angle ¢, for the
calculation of which the variance ratio along the PCA axis is used, images that have
more noise such as Img+sampled+Gauss and Img+sampled+Gauss+resampled have a
less precise estimate of the ¢ angle than the img+Gauss+resampled and Img+sam-
pled+Gauss+resampled+E-D example. Figures 6 and 7 also show that the proposed
E-D is effective in cleaning Img+sampled+Gauss+resampled from measurements that
cause disturbances in the variance estimation, which directly translates into improved
estimation of 6.

These conclusions are supported by detailed statistic studies, the results of which we
present in Figures 4 and 5. These figures show mean absolute error (MAE) estimates
of (0,¢). In the case of the full Img image, the 6 angle estimate is very accurate and
decreases due to resampling. The largest error in determining the angle 6 is in the
area of small value of this angle (less than 10 to 20 degrees) because then the change
in the statistical distribution of radiation particles is not large enough to be accurately
estimated by PCA. A similar phenomenon also occurs in the case of the angle ¢, when
the largest estimation error is in the interval [0, 10] and [170, 180]. This is due to
trigonometric periodicity. Both of the phenomena discussed above are expected and
easily explained, which proves the stability of our proposed method. As can be seen in
Figure 5, the use of the E-D network significantly improves the accuracy of the angle 6
estimate, which is calculated based on the variance along the PCA axis sometimes by as
much as 20 degrees on average, compared to the estimate without the E-D architecture.
The larger the actual 6 angle is, the more the particle distribution is “stretched” in space
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Fig. 4. MAE of estimations of (6, ¢) from Algorithm 1. Each measurement is averaged over 10 trials.
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Fig. 5. MAE of estimations of (6, ¢) from Algorithm 1. Each measurement is averaged over 10 trials.
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Fig. 6. Examples of results of Algorithm 1 for (0 = 62,¢ = 85). From left to right, from top to
bottom (see also the titles of images): estimation of these angles for Img (800 x 800) equals
(6 = 62.64,¢ = 85.15), for Img convolved by Gaussian it is (6 = 60.96,¢ = 85.38), for Img
convolved by Gaussian and resampled to 80 % 80 it is (f = 60.77,¢ = 85.21), for sampled Img,
convolved by Gaussian (800 x 800) it is (6 = 50.17, ¢ = 84.34), for sampled Img,; convolved by
Gaussian and resampled to 80x 80 it is (6 = 49.43, ¢ = 84.19), for sampled Img, convolved by
Gaussian, resampled to 80x 80 and processed by E-D it is (§ = 56.55, ¢ = 84.84).

and more noise appears on Img, through the sampling process. The E-D network does
an excellent job of reducing this unfavorable phenomenon. As in the previously discussed
cases, this phenomenon is expected and easily explained, which proves the stability of
Algorithm 1. When E-D is applied for Img, convolved and resampled, the number of
cases (estimations) where MAE < 10 increases from 48% to 79% for 6 and from 62% to
65% for ¢, MAE < 5 increases from 24% to 45% for 6 and from 47% to 52% for ¢, MAE
< 1 increases from 6% to 9% for 6 and from 12% to 16% for ¢. This is a significant
change and demonstrates the high utility of the E-D network used.

5. Conclusion

The proposed algorithm based on the use of PCA for the determination of spherical
coordinates of sampled cosmic ray flux distribution proved to be an effective and precise
method in the experiment we conducted. The additional use of a deep neural network
with an encoder-decoder architecture significantly increases its efficiency in the area of
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Fig. 7. Examples of results of Algorithm 1 for (§ = 76,¢ = 170). From left to right, from top to
bottom (see also the titles of images): estimation of these angles for Img (800 x 800) equals
(6 = 75.87,¢ = 169.54), for Img convolved by Gaussian it is ( = 72.96,¢ = 169.85), for Img
convolved by Gaussian and resampled to 80x 80 it is (§ = 72.85, ¢ = 169.81), for sampled Img,
convolved by Gaussian (800x800) it is (6 = 57.13, ¢ = 169.97), for sampled Img, convolved by
Gaussian and resampled to 80x 80 it is (§ = 57.04,¢ = 170.01), for sampled Img, convolved by
Gaussian, resampled to 80x 80 and processed by E-D it is (§ = 72.00, ¢ = 173.06).

high values of angles (6, ¢) making the proposed approach even more effective. Our Al-
gorithm 1, together with the E-D network, is a very important method that will find its
application in the research related to physical observations of fundamental astronomical
processes. In particular, the introduced scheme can be directly useful in the design of
small-scale complex CRE secondary flux detection systems. As we mentioned earlier,
to the best of our knowledge, the results presented in this paper are pioneering in the
field of small-scale complex CRE secondary flux detection systems, and it is difficult to
point out research for the direct comparison. However, based on published research de-
scribing the use of a deep encoder-decoder for image denoising and original probabilistic
distribution reconstruction [7,11,50,54] we obtained the expected results, that is, the
removal of unwanted noise at various frequencies while enhancing the signal with the
desired statistical distribution. The effect of this denoising was an increased accuracy in
estimating the rotation angles of the particle distribution described by the equation (1).

Several research problems have arisen in the preparation of this study that need to
be addressed in future work. These include the effect of the topology of the detector grid
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on the efficiency of estimating the angles (0, ¢), the estimation of the appropriate grid
density on the correctness of the estimate, and the dependence of the estimate on the
energy of the particle flux and the offset of the flux center with respect to the detector
grid center. These issues will be the subject of future research; nevertheless, it can
already be summarized that our proposed method is a very effective approach.
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Abstract The maturity of oil palm fruits is a very crucial factor for oil extraction industry in In-
donesia, Malaysia, Thailand, and other countries to ensure the oil quality and increase productivity.
This literature review examines the various machine learning techniques, especially the deep learning
techniques used to automate the maturity grading process of oil palm fresh fruit bunches. The crucial
advantages of using machine learning approaches were highlighted, and the limitations and prospects of
each research article were discussed. This review describes the various image pre-processing techniques
utilized to prepare images for model training. CNN is identified as the dominant over all classification
techniques of machine learning to classify the oil palm fruits images based on maturity level, due to its
ability of learning complex features.

Keywords: machine Learning, deep Learning, CNN, feature extraction, Computer Vision, maturity
grading.

1. Introduction

The maturity grading of oil palm fruits plays a pivotal role in the overall success and
sustainability of the palm industry. To find out the accurate estimation of fruit ma-
turity is a central key point for improving agricultural practices, ensuring oil quality,
and maximizing the palm fruit production. In the recent era, the implementation of
machine learning algorithm has become a transformative way to increase the efficiency
and precision of maturity grading process. This literature review is based on to explore
the existing body of knowledge on the uses of machine learning techniques in the field
of maturity grading of palm fruit, focussing on to provide the comprehensive overview
of the current research, methodologies used and the key findings.

Computer Vision and Image Processing techniques are the two correlated and in-
terconnected fields of machine learning in Computer Science. The potentiality of these
techniques is to derive and conclude the information from the visual data and train
the machines with the ability to interpret like human visual perception. There are

Machine GRAPHICS & VISION 33(2):47-75, 2024. DOI: 10.22630/MGV.2024.33.2.3 .


https://orcid.org/0009-0003-6113-7123
https://orcid.org/0000-0002-9018-7694
https://orcid.org/0000-0003-0220-7825
https://orcid.org/0000-0002-1996-5166
https://orcid.org/0000-0002-0204-9014
https://orcid.org/0000-0002-8046-4192
https://orcid.org/0000-0001-9174-271X
mailto:nurdiyana[at]upnm.edu.my
mailto:kamal786lari[at]gmail.com
https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2024.33.2.3

48 Machine vision for automated maturity grading of oil palm fruits. . .

many applications based on Computer Vision and Image Processing across various do-
mains, including fruit categorization, surveillance system, healthcare, object detection,
and more [113].

Computer Vision techniques are utilized to develop the algorithms and models to
impart the systems with the ability to make decisions from the visual data and interpret
into the human demand. Many tasks, such as recognition, detection, segmentation, and
visual understanding are being performed within the range of Computer Vision Tech-
nique. The decisive goal is to enhance machine capability to be able to comprehend and
make interaction with the visual world [37]. Image Processing as the name suggests, it
has the role of manipulate and analyse the images to boost their qualities, extract infor-
mation and perform a subsequent analysis. It has basic operations such as compression,
enhancement, filtering, and restoration among the others. It plays a vital and potential
role in pre-process data before being applied to higher tasks in Computer Vision [41].

The grading system of oil palm fruits has its own potential role by categorising them
based on the parameters such as color, bunches, and shape to enhance the efficiency
and improve the productivity. The Machine Learning approach has the great impact of
automating the maturity grading process. The Machine Learning approach can analyse
the images captured in RGB format, and it can extract the morphological and color
features. There are many Machine Learning techniques, such as CNN, KNN, fuzzy
logic, and other that are employed to detect the fruits accurately and classify them
accordingly [52].

2. Literature survey

Palm oil is an important commodity that is widely used in the food industry, biofuels, and
various other industries [96]. The maturity of palm fruits influences the quality of palm
oil, with different grades of oil produced from fruits at different stages of maturity [133].
Therefore, accurate detection and grading of palm fruits is crucial to ensure the quality
of the oil produced.

Traditional methods of palm fruit detection and grading are time-consuming, labor-
intensive, and prone to errors. In recent years, machine learning techniques, particularly
deep learning, have presented hopeful outcomes in numerous computer vision tasks,
containing object detection and classification [70]. However, by incorporating quantum
computing techniques, researchers can further improve the performance of these meth-
ods.

Quantum deep learning (QDL) is an emerging field that combines quantum com-
puting and deep learning to achieve better performance in machine learning tasks [39].
QDL uses quantum circuits to enhance the performance of classical deep learning mod-
els. The potential of QDL in enhancing machine learning tasks has been demonstrated
in various applications, such as image classification and natural language processing.
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Zheng et al. (2020) proposed a QDL-based approach, Quantum PalmNet, for palm tree
detection, which outperformed classical deep learning models in terms of accuracy and
speed [5]. This approach can be extended to palm fruit detection and maturity grading.

In the agriculture sector, computer vision techniques have been used to analyze var-
ious crops, including fruits and vegetables. Machine learning algorithms have been used
to detect and classify different types of fruits and vegetables based on their color and
shape features [103]. QDL has the potential to improve the performance of these algo-
rithms by leveraging the power of quantum computing. Sabri et al. (2017) used deep
learning techniques to classify palm fruits based on color features. The study showed
promising results in identifying fruits at different maturity stages [98]. However, incor-
porating QDL techniques can improve the performance of the model.

2.1. Pre-processing

As the name suggests, the pre-processing refers to the stage of images before going
to be processed. It plays a crucial role to prepare and transform the image data for
machine learning tasks such as recognition, classification, prediction, analysis, detection,
and segmentation by using the image acquisition, enhancement, resizing, normalization,
extracting relevant features and others [117].

2.1.1. Image acquisition

The first step in pre-processing is to collect the image data using the high quality of
input devices. To ensure the extensive acquisition of image characteristics, you must
capture the images on different angles under the predefined lighting conditions. The
classical spectrum imaging technique captures images using cameras based on the RGB
wavelength. These images can be utilized to provide color information for assistance in
maturity grading [31]. Unlike the visible spectrum imaging technique where only three or
four bands (e.g., RGB and sometimes nearer to Infrared) are used to capture the image
data, the HST (Hyperspectral Imaging) technique works on minor continuous spectral
bands to capture images to improve the image feasibility. The HSI has the great impact
on maturity grading of palm fruits based on the spectral characteristics [26]. While the
NIR (Near-Infrared) Imaging technique captures electromagnetic radiation within the
range of wavelength 700-2500 nanometers. This feature offers the insights to ponder
into the pulp of fruit and produces feature extraction such as biochemical composition
and moisture amount. This technique is useful to assess the fruit quality [114].

2.1.2. Image enhancement

Image enhancement is an important pre-processing step for the computer vision task,
employed to enhance the image quality and extract the relevance information from the
acquired images. This step may consist of adjusting sharpness, maintaining brightness,
and increasing the contrast to reduce the noise and enhance the feature selection of fruit
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images. In the current era, machine learning techniques significantly have advancement
and improvement to the image enhancement methods [12].

The classical image enhancement approaches consist of the techniques like contrast
stretching [125], histogram equalization [129], and spatial filtering [1]. These techniques
are simple, easy to use and computationally efficient, but commonly they don’t produce
satisfactory outputs, especially in the noise and lightening conditions. To deal with such
type of conditions, deep learning techniques are utilized, especially CNNs (Convolutional
Neural Network) have gained the popularity for image enhancement due to their capa-
bility of learning from complex features directly or indirectly from image data. There are
many methodologies proposed in this field, such as SISR [126] (Single Image Super Reso-
lution) has the potential goal to enhance the quality of low-resolution images. The other
approaches such as SRGAN [72] (Super-Resolution Generative Adversarial Network),
and ESRGAN [121] (Enhanced Super-Resolution Generative Adversarial Networks) and
SRCNN [29] (Super-Resolution Convolutional Neural Network) have produced the sat-
isfactory results in preparing the high-resolution images from the lower resolution input
images. Enhancing and converting the images captured in the low-light situation is a
tedious job due to the poor visibility and external noises. The Retinex-based model [74],
Fusion-based approach, and CNN-based technique [23] offer solutions to handle this type
of situations.

To fulfil the criteria of image enhancement is impossible without dealing with the
unwanted noise. The deep learning-based Noise reduction methods, such as RIDNet [8]
(Real Image Denoising Network), CBDNet [42] (Convolutional Blind Denoising Net-
work), and DnCNN [130] (Denoising Convolutional Neural Network), have the superior
priority over classical denoising techniques. To deal with the blurred images is also a
critical task in accomplishing the image enhancement process. Removing the blurriness
of the images becomes essential while working on medical imaging or surveillance appli-
cations. The most used CNN-based deblurring models like DeblurGAN [66] (Deblurring
Generative Adversarial Network) and SRN-DeblurNet [81] (Spatial Recurrent Network
for Image Deblurring) have presented the satisfactory result to restore the sharpness to
the blurred images.

GANs (Generative Adversarial Networks) have emerged as the effective frameworks
to satisfy the image enhancement tasks. They follow the process of adversarial training
to generate the visual and realistic required images. The task of image enhancement
is accomplished by several models, including Pix2Pix [53], SRGAN [72], and Cycle-
GAN [132], which utilize Generative Adversarial Networks. These models enable image-
to-image translation, higher resolution generation, and enhancement of unpaired images,
respectively.
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2.1.3. Image resizing

Image resizing is a crucial task in image pre-processing and computer vision. Image
resampling or image scaling is another name for it. In the machine learning context, re-
searchers have implemented many techniques to resize the images while maintaining and
preserving the actual visual effects of images. Bicubic interpolation [94] is a commonly
used methodology to resize the images. It produces the computationally efficient and
smooth results. The recent advancement in deep learning technology has led the CNN
model to do the image resizing tasks as well. Kim et al. (2016) proposed a model called
ESPCN (Efficient Sub-Pixel Convolutional Neural Network) which modifies and scales
the images from lower resolution to higher resolution. It effectively has the job for single
image super resolution [62]. Content-Aware image resizing technique is also a powerful
approach that preserves the visual content and minimizes the distortion in the region of
interest.

Avidan and Shamir (2007) introduced Seam carving algorithm, a standard content-
aware image resizing technique that inserts or eliminates the seams of the lower resolution
pixel to resize the images [10]. Although it plays an important role in the image resizing
while preserving the actual visual content, it may produce unwanted results when dealing
images of high complexity. The other technique to resize the images is Learned Image
Resizing, that adopts the machine learning algorithms to resize the images and produce
the required result based on their content. Danon et al. (2021) proposed a learned im-
age resizing approach to resize the images using a deep neural network being trained
on the large dataset of paired images [27]. This method achieves the better response
compared to a classical image resizing technique, especially in complex data with chal-
lenging images. The implementation of the multi-scale approaches to resize the images
and segmented them based on the resolutions, then finally merged them to generate the
required resized output image. He et al. (2016) proposed deep network architecture for
the multi-scale high-resolution images. This approach progressively scales the images on
various measures to get the best result [46].

Table 1 presents a comprehensive overview of color parameters and features used
in various studies, including color spaces, color values, statistical color features, color
histograms, and texture analysis, with references to relevant literature.

2.1.4. Color normalization

Color Normalization is a critical image pre-processing step to ensure the color persistent
across various imaging stages to perform accurate analysis and interpretation of visual
image data in the computer vision applications. It ensures the reliability and robustness
in numerous machine learning applications. Numerous techniques have been proposed to
normalize the color distribution and minimize the changing effects caused by lightening,
sensors, or other input devices. The Table 2 lists various techniques for image processing
and color normalization, including Histogram Equalization for enhancing contrast, Deep
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Tab. 1. Comparison of color features for oil palm fruits analysis.

Ref. Color parameters & features Color Space

[54] Photogrammetric, L*a*b color space
(5] Color Values, Statistical Color Features, Color Histogram
[112]  Uniformity, inverse difference, homogeneity, & Outer Color

B
[78]  Visual Inspection, black/dark purple color, RG
[45]  Surface Color, Dark purple, orange red
2] Color histogram & Statistical color, UV, RGB, & NIR
9] Color composition, Red & orange skin color, blackish brown, black skin RGB, HSV

[80] TCS3200, RGB

[92] FRedS4, IRedS4, etc., Blue, Green, Amber, Red, Deep Red Far-Red band

5] Statitial celor ontures & celo hisograms RGB, HSV, 172"
[58] Random brightness ranges from -40% to +60%, RGB ‘ RGB, L*a*b
[59] Gray-scale threshold, RGB ‘ HSI, L*a*b
[110] Histogram Analysis, RGB & L*a*b ‘ CIE L*a*b
[40]  Hue value, Hue measurement ‘ RGB, HSI, HSV
[49] HOG & FREAK, RGB color channels ‘ RGB, HSI
[124] Hue, Saturation & Value conversion from RGB to HSV ‘ HSV
|
|

[116] Mesocarp color, Orange for ripe, yellowish/yellow for unripe Wayvelength
[13]  Spectral bands & reflectance values, Carotenoids and Chlorophylls ‘ Spectral Bands
[77]  Surface Color, Dark Purple, Red Orange ‘ Yellowish Red

Learning-based Methods like CNN for color normalization, Batch Renormalization to
standardize image activations, Gray-Level Co-Occurrence Matrix (GLCM) for texture
analysis, Retinex Algorithm for improving color consistency, Instance Normalization for
per-pixel color adjustments, Color Transfer for matching color distributions between im-
ages, and Color Constancy Algorithms for maintaining consistent colors despite lighting
variations.

2.1.5. Image segmentation

The primary goal of this fundamental task is to partition an image into meaningful
pixel or segments. These segments correspond to the region of interests in an image.
Image Segmentation approach is used in various machine learning tasks such as image
classification, object detection and semantic segmentation. The Tab 3 outlines various
segmentation techniques, including Thresholding-Based Methods, like Otsu’s method for
optimal threshold selection, Edge-Based Segmentation techniques, such as Canny Edge
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Tab. 2. Various techniques used in color normalization for image processing.

Techniques Description
Histog-rarr.l This technique is used to enhance the contrast of an image by adjusting the intensity
Equalization distribution of pixels [89].

Deep Learning
based Methods

In the deep learning-based approach, CNN methodology is used to normalize the color
directly from the image data [131].

Batch
Renormalization

Batch Renormalization is an extended version of Batch Normalization technique, funda-
mentally used in deep learning to normalize the activations of mini batches in the neural
network. It transforms the color distribution of images into a standard form, also re-
duces the generated color variations because of lightening situations, cameras, sensors,
and other devices that affect the image appearances [50].

Gray Level
Co-Occurrence
Matrix (GLCM)

GLCM is a technique, particularly used in texture analysis. It also employed as the feature
selection method to quantify the texture of an image, which enhances the robustness and
performance of a machine learning model on trained images [36].

Retinex
Algorithm

It is a very powerful tool used in the process of image pre-processing to accomplish the
task of color normalization. It manages to reestablish the gaps due to the lightening
variations, sensors, or other imaging input devices, eventually the image color looks more
realistic and natural. Basically, it improves the consistency of color, enables robust feature
selection, and enhances the interoperability and visual quality of the images [68].

Instance
Normalization

Instance Normalization is a technique, specially used to normalize the colors and features
across the various instances. It performs the normalization task separately on each pixel
values of each individual image. It also computes the mean value and standard deviation
of each color (Red, Green, and Blue) of an image [119].

Color Transfer

Color transfer is a machine learning approach used in color normalization as it provides
the consistency and accuracy to image analysis and the computer vision tasks. This ap-
proach tries to match the color distribution from source image to targeted image. It
transfers the color features from the target to source image while preserving the dimen-
sional information [95].

Color Constancy
Algorithms

This algorithm has a crucial role in a condition in which lightening may vary on images
due to any reason. The goal is to keep the image color consistent irrespective of any
lightening situation. This is helpful in the object detection process where variations in
lightening may affect the object appearance [35].

Detection and Sobel Operator, Region-Based Segmentation for partitioning images based
on attributes, Deep Learning-Based Methods utilizing CNN architectures like U-Net, and
Clustering-Based Methods, like K-means and Fuzzy C-means for grouping similar pixels.

These are many image segmentation techniques; each has its own advantages and
disadvantages. The better selection of image segmentation techniques depends on various

factors like image nature, computational resources, objects complexity, etc.

Table 4

shows that various segmentation techniques, including K-means Clustering, Gray-scale
thresholding, and Histogram-based Analysis, have been applied in maturity detection,
ripeness detection, and weight prediction of agricultural products between 2009 and 2023.
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Tab. 3. Techniques used in image segmentation for image processing.

Techniques

Description

Thresholding
Based Methods

This method uses the gray-level histogram analysis to determine the optimal threshold
value for an image segmentation. The method works on to increase the inter-class variance
of pixel intensities in an image. Otsu (1979) implemented a threshold selection method,
that is very effective in object detection, image analysis in the medical field, document
processing and other applications [85].

Edge Based
Segmentation

This technique identifies the boundaries/edges of an object within an image. These edges
refer to the transitions in color, texture and intensity that is useful for object detection,
feature selection and image pre-processing. Here is an overview of edge-based segmentation
in image pre-processing:

1. Canny Edge Detection: The Canny edge detection method is common to identify the
edges in an image. This method follows the different steps like gradient computation to
detect the edge strength, hysteresis thresholding to recognise and interconnect the edges,
non-maxima suppression to decrease the edge thickness, Gaussian smoothing for the noise
reduction and others. It minimizes the false detection and maximizes the true edge detec-
tion and can robust the noises [18].

2. Sobel Operator: It is a convolutional based gradient method to detect the simple edges
of an image. It involves with separate kernels to detect horizontal and vertical edges of an
image by calculating the approximate gradient magnitude [108].

3. Laplacian of Gaussian (LoG): LoG is the combination of Laplacian edge detection and
Gaussian smoothing to enhance edge clarity and to reduce the noise as well [76].

4. Gradient-Based Methods: This method extracts gradient magnitude and the direction
of pixels in an image for edge detection. Techniques like Scharr operator [17], Prewitt
operator [21], Robert Cross operator [82] are mostly used in gradient-based method for
edge detection [91].

Region Based
Segmentation

This segmentation technique is used to partition an image based on its color intensity,
pixel resolution, texture, or other attributes. It is also employed to combine pixels that
have same features into an identical region. It provides the meaningful and more obvious
result in the presence of unwanted background and noise, compared to other methods
like pixel-wise segmentation technique. The watershed algorithm is also used for image
segmentation based on image gradient [120].

Deep Learning
Based Methods

CNNSs have achieved the incredible success in the field of image segmentation of machine
learning tasks. It works with different architectures like SegNet [60], FCN (Fully Convolu-
tional Network) [57] and U-Net [6] and uses coder decoder structures to produce safeguard
for spatial information [97].

Clustering
Based
Methods

Clustering based methodology partitions an image into different segments/regions based
on the pixels’ similarity and try to combine them that have common features like similar
color, intensity, resolution, spatial proximity, texture, and others.

1. K-mean clustering methods partition image pixels into the number of K clusters based
on their similar features. It also involves in color based (RGB) segmentation or LAB
(Lightness, Green-Red, Blue yellow) spaces [44].

2. Fuzzy C-means clustering method is an extended version of K-mean clustering method,
in which every pixel is assigned to a degree in each cluster to accomplish the task of image
segmentation [15].

Tab. 4. Descriptions of segmentation techniques used for palm fruits analysis.

Year Segmentation Techniques Applications Reference
2009 K-means Clustering Algorithm Maturity Detection [54]
2009 Gray-scale thresholding Maturity & Weight Prediction [59]
2015 Histogram-based Analysis Maturity Detection [102]
2019 K-means Clustering Algorithm Maturity Detection [40]
2023 K-means Clustering Algorithm Ripeness Detection [58]
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Tab. 5. Various methodologies of feature extraction in image pre-processing

Methods

Description

Histogram
based

This method is a graphical representation to analyse the distribution of pixel intensities
in an image. By analysing the histogram, many features like skewness, entropy and uni-
formity can be extracted to deliver the detailed information about an image [11]. Popular
histogram methods are:

1. Histogram Equalization: It improves the contrast of an image by applying the redistri-
bution task on pixel intensities in an image [85].

2. Local Binary Patterns (LBP): Extracting the features of an image by performing the
comparison on each pixel with its nearest pixels [84]

3. This method introduced by Dalal and Triggs in 2005 to represent the edge characteris-
tics, local gradient texture and shape information of an image. In this method, an image
is divided into small regions that are called cells, then the histogram orientation for each
cell is computed [25].

Transform
based

Mathematical transformation is applied in this method to extract the image features from
the specified domain. It transforms the basic image attributes into other domain where
features extraction can be performed easily. In this method, Principal Component Analysis
(PCA) technique is used to reduce dimension and Discrete Wavelet Transform (DWT) to
acquire the information about an image with multi-resolution [61]. Common Transformed-
based methods are:

1. Wavelet Transformation: It transforms the images into different frequency patterns and
captures each minor details of an image [75].

2. Discrete Fourier Transform (DFT): This transformation method is used to compress
and filter the image. It transforms the images into different frequency domains [55].

Deep Learning
Based Methods

The Deep Learning-based method involves the Convolutional Neural Network (CNNs) for
features selection in the image pre-processing to automate the learning of hierarchical
demonstration from raw image data [24].

Texture
Analysis

This technique is used to collect the information about the correlation between image
pixels based on its texture. It describes and categorize the repetitive patterns found in
an image. The methods like Gabor Filter and Local Binary Patterns (LBP) are common
to provide the information about patterns and texture properties within an image [48].
Gabor Filters named after a physicist Dennis Gabor, generally used for texture analysis.
They are the linear filters employed on multiple orientations and scales [73]. The other
method used in Texture Analysis is Gray-Level Co-occurrence Matrix (GLCM) to capture
the statistical features of image textures by performing analysis on pixel correlations [51].

Statistical
Features

These methods used to capture the statistical features of an image, such as kurtosis, skew-
ness, mean and standard deviation for each color pixel or the entire image. These methods
are very efficient to provide information about the distribution of an image intensity [28].

2.1.6. Feature extraction

Feature extraction in image pre-processing involves determining and identify the color
features from the segmented image. Color features have the attributes of shape, texture
patterns and histogram which distinguish one image from others. The goal of this task
is to acquire the most relevant features from an image to satisfy the criteria of machine
learning models. The Tab 5 summarizes various image feature extraction methods,
including histogram-based, transform-based, deep learning-based, texture analysis, and
statistical features, providing a comprehensive overview of techniques used to analyze
and understand image content.
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Tab. 6. Techniques used in feature scaling for image processing.

Techniques Description

This is a most common technique to scale the pixel values into a fixed range,
Min-Max Scaling usually between 0 and 1. This is a widely used technique due to its effectiveness
and simplicity [107].

It is also known as the Standardization, to transform the pixel values into the
mean value of 0 and the standard deviation with 1. This technique is best suitable
and most effective in the case where the pixel values vary significantly across the
images [22].

Z-Score Normalization

This technique is used to scale the image according to the model needs. The
Median absolute technique (MAD) method is generally used in this technique to
reduce the effect of outliers. It is a more robust method compared to other classical
mean and standard deviation-based normalization techniques [19].

Robust Scaling

This technique is commonly used to redistribute the intensities of the pixel to
Histogram Equalization boost the image’s contrast. It modifies and improves the visual view of images
and make it beneficial for the task in segmentation and object detection [38].

It stands for Principal Component Analysis (PCA), used for feature extraction
and to decrease the dimensionality of image data. It converts the original pixel

PCA-Based Methods space into a lower dimensional space while maintaining the relevant information
about an image. It minimizes the computational complexity and improves the
performance of the model [105].

It is a standard version of Histogram Equalization technique that employed on
only small regions of an image to adapt the variations of local contrast. This
technique is highly recommended when lightening conditions are not uniform [89].

Adaptive Histogram
Equalization (AHE)

Contrast Limited It is an extension of AHE, widely used in processing of medical imaging and
Adaptive Histogram satellite images. It limits the contrast amplification and minimizes the over noise
Equalization(CLAHE)  in an image [88].

2.1.7. Feature scaling

The term Feature Scaling in image pre-processing of machine learning refers to the
standardization and normalization of image pixels before utilizing in machine learning
model. Image is represented in the form of array with pixel values, where each pixel
in the array corresponds to a numerical value that represents the color or intensity of
an image. Pixel values depend on many factors such as image capturing devices, sen-
sors, or the lightening conditions. Therefore, Feature Scaling technique is applied to
bring them with common pixel values to form a similar scale and improve the perfor-
mance. The table 6 provides a comprehensive overview of various image preprocessing
techniques, including normalization methods (Min-Max Scaling, Z-Score Normalization,
Robust Scaling), histogram equalization techniques (Histogram Equalization, Adaptive
Histogram Equalization, Contrast Limited Adaptive Histogram Equalization), and fea-
ture extraction methods (PCA-Based Methods), highlighting their applications and ben-
efits in image analysis tasks.
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Tab. 7. Techniques used in feature scaling for image processing

?;;)aes Description
Image data augmentation technique is fundamentally used to increase the size and diversity of orig-
inal image datasets by applying various transformation methods. Some common functionalities for
image data augmentation are: Flipping, Cropping, Addition of Gaussian noise, Adjustment of
contrast, Elastic transformation, Rotation, Scaling, Translation, Adjustment of brightness, Color
Image jittering and so on. These techniques can be applied independently or in the combined to generate

the augmented image datasets. The selection criteria for image augmentation techniques depends
on various factors such as dataset features, task consideration and the level of augmentation re-
quired [106].

Textual data augmentation technique is employed to improve the performance and robustness of
NLP, especially with limited training datasets. This technique generates the new synthetic data
points by applying numerous transformations to the existing text data. Some functionalities in
Textual textual data augmentation technique are Addition, deletion, and word swapping, paraphrasing and
replacement of synonyms. These are generally used in NLP tasks such as sentiment analysis, textual
classification and to make the model capable to generate a wide range of training datasets [122].

Audio data augmentation technique is basically used in background sound classification, speaker
identification and automatic speech recognition (ASR). This technique is involved in generating

Audio the new audio samples from the existing one to increase the size of datasets. The tasks involve
in this technique are Time stretching, addition of background noise, Speed setup, shifting of pitch
and the time warping [87].

Tabular data augmentation technique is used to address the challenges faced with imbalanced
datasets and to increase the size of tabular datasets from the existing one. The tabular data

Tabular ¢ organised in rows and columns, typically found in databases or spreadsheets. The tasks in-
volve in tabular data augmentation techniques are: Synthetic Minority Over-Sampling Technique
(SMOTE), Noise injection and Random sampling etc [34].

Video augmentation technique is aimed to generate the new samples while preserving the significant
content of the original videos. The involved in these techniques are: Temporal cropping, Frame

Video  sampling and Frame changing, etc. These tasks may be applied individually or in a combined
mode to enhance the diversity of training datasets [20].

2.1.8. Data augmentation

Data augmentation technique aimed to improve the robustness and model generaliza-
tion by increasing the training size of datasets. It typically generates the new datasets
from the existing ones. The Tab 7 provides a comprehensive overview of data augmen-
tation techniques for various data types, including image, textual, audio, tabular, and
video data, highlighting the methods used to increase dataset size and diversity while
preserving data integrity and enhancing model performance.

2.2. Classification methods

Classification is very essential task in the context of machine learning, used to categorize
the data into predefined labels or classes based on their features. It is a supervised
learning technique in which model is trained with the labelled data and each data point
is assigned with a class label. The main goal of the classification task is to perform
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a mapping from input features to class labels, then can be utilized later to predict the
class label of unseen, new data. There are many classification algorithms, each has
its own application, pros, and cons, etc. The common classification algorithms will be
presented in the following sections.

2.2.1. Traditional Classification Methods

The classification methods used to categorize the data based on features have been used
for several decades. They are the main foundations for modern classification algorithms
in the current era. However, due to the advancement in the field of deep learning and
neural networks, the modern classification methods have become a popular choice for
larger and complex datasets. The common traditional classification methods are:

1. Decision Trees: As the name suggests, it is a hierarchical or tree like structure in
which leaf node represents the class label, branches to decision rule and internal node
represents the features. It is the most famous supervised machine learning algorithm
known for its simplicity, easiness for implementation and interpretability. It is used
for classification and regression to handle both numerical and categorical data [63].

2. k-Nearest Neighbors (k-NN or KNN): KNN is a very simple and effective al-
gorithm for the image classification task. In this method, the class label of the new
dataset is basically determined by the class label of its nearest neighbors. Because
of the non-parametric method, it classifies instances based on the majority class la-
bels of its nearest neighbors. It is widely used for both classification and regression
tasks [64].

3. Support Vector Machines (SVM): SVM is a very powerful, effective, and popular
supervised machine learning algorithm for image classification, especially with small
to medium size datasets where interpretability for the model is required. It constructs
an optimal hyperplane or a set of hyperplanes to separate the different classes while
minimizing the classification errors and maximizing the margin between classes. It is
designed to work very well as a linear and nonlinear classification in high-dimensional
space [47].

4. Logistic Regression: Logistic Regression is widely used linear model for binary
classification in machine learning, also applied for image classification. It uses the
logistic function to estimate the probability that given instances belong to a specific
class label or not [69].

2.2.2. Deep Learning-Based Classification Methods

Deep learning-based image classification is significantly a revolutionized advancement in
the field of computer vision, capable of achieving a high level of accuracy and scalability
across numerous applications. This classification method takes the advantages of deep
neural networks, particularly CNNs, to automatically learn hierarchical representations
from raw image datasets.
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Convolutional Neural Networks (CNN): CNN is a deep learning model, especially
designed for analysing and processing the grid data, such as images. It has revolu-
tionized the deep learning-based image classification method. It consists of different
types of layers, and each layer plays an important role in the predefined network to
automatically learn the hierarchical representation from the raw image data. There
are mainly three types of layers found in CNN, such as convolutional layers, pooling
layers, and fully connected layers [86].

Recurrent Neural Networks (RINN): It is a type of artificial neural network, pri-
marily designed for time-series and sequential data to be processed. It comes under
the category of supervised machine learning techniques based on neuron with at least
one feedback loop. It is capable of handling a sequence of random length, unlike
the feedforward neural network, which can only process the fixed size of input vec-
tors. Backpropagation though time (BPTT) or its variant, truncated backpropagation
through time is used to train RNN for the classification tasks. It has been applied to
various classification tasks, such as speech recognition, NLP, sentiment analysis, and
others. However, it has the limitation of a gradient problem that makes it unable to
train on long range dependencies. To solve this problem, researchers have proposed
many advanced RNN architectures, such as GRUs and LSTM. Overall, it is a very
powerful tool for performing classification tasks [101].

Generative Adversarial Networks (GANs): GANs primarily focus on image gen-
eration tasks because of being a generative model, but may also be used for image
classification tasks. A single GAN is designed with two neural networks: genera-
tor and discriminator. The generator is responsible for producing fake images while
discriminator makes attempts to differentiate between the fake and real images. By
using the continuous learning and training process, the generative enhances its ca-
pability to create seemingly actual images. They may be utilized to perform the
image classification by using data augmentation technique, features selection and
other semi-supervised learning model [128].

2.2.3. Ensemble learning methods

Ensemble learning methods are emerging powerful machine learning techniques, espe-
cially to perform the image classification tasks. The methods are employed to make
improvements in model performance by achieving the goal of combining multiple base
learners to get a stronger robust predictor. These methods are extensively effective,
proven to be robustness and explore the generalization ability in image classification.

However, training of ensemble methods requires some attentions during the process
of main learner selection and diversity to improve the efficiency. Here’s an overview of
the ensemble learning methods used for image classification in machine learning.
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Evolution of ML and DL in Maturity Grading of Oil Palm Fruits
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Fig. 1. Research publications (2009-2023) for Maturity Grading of Oil Palm Fruits.

Random Forest: Random forest is an ensemble method that can achieve the required

performance with limited computational instances, or in a case where interpretability
is needed. It is not normally used for the image classification tasks, but it can be
served as a baseline model in the ensemble method, as it constructs the multiple
decision tree during model training and predicts the class labels. It is capable of
enhancing accuracy and reduce the overfitting [16].

Gradient Boosting Machines (GBM): GBM is not the first choice for image classifi-

cation, but still can be considerable as an alternative where robustness, interpretabil-
ity and effectiveness is required. It is a powerful classification method associated with
tabular and structured datasets. It can be used for image classification with some
applicable features and pre-processing techniques. The fundamental work of GBM
is to build a series of weak learners, usually in the form of decision tree to form a
stronger learner [14].

Fig. 1 illustrates the evolution of the number of research articles on machine learning
and deep learning in the context of oil palm fruit maturity grading over the period from
2008 to 2023, showing a significant increase in the use of deep learning techniques in
recent years.

Table 8 provides a comprehensive overview of research on oil palm fruit maturity

grading using various machine learning and deep learning classifiers, including PCA,
MLP, QDA, ANN, CNN, SVM, ELM, FCM Clustering, Simple Logistic, Lazy KStar,
LDA, MDA, YOLO, and YOLOv4, with varying accuracies and dataset sizes.
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Tab. 8. Comparative analysis of classification techniques used for maturity grading of oil palm fruits
with their accuracy. Tr: training set, Ts: testing set, Val: validation set.

. . Data-
Year | Classifiers Classification set Datgget Accuracy Ref.
Classes Size Partition
2009 | PCA Unripe, Under-Ripe, 48 | Tr:32, Ts:16 | 99.2% [59]
Ripe, Over-Ripe
Unripe, Under-Ripe, 93% (reduced features), .
St MLP Ripe, Over-Ripe nfa |n/a 91.67% (full feat.) [33]
Unripe, Ripe, . .
QDA Over Ripe 120 | Tr:90, Ts:30 | 85% [99]
2014 ‘ ANN ‘ gnder'B‘pe* Ripe, ‘ 469 ‘ Tr: 439, Ts: 30 ‘ 95% ‘ [13]
ver-Ripe
Ripeness
2015 | ndex Under-Ripe, Ri 76 | Tr:40, Ts:36 | 67.10% 102
derived nder-Ripe, Ripe r: 40, Ts: 10% [102]
from GA
2016 | ANN Under-Ripe, Ripe | 60 |Tr:40, Ts:20 | 70% | [104]
CNN Unripe, Under-Ripe, 120 | Tr:96, Ts:24 | 100% (98]
2018 Ripe, Over-Ripe
ANN Under-Ripe, Ripe, 180 | Tr:120, Ts:60 |93% [4]
Over-Ripe
. . 57% by color features,
SVM Unripe, Under-Ripe, 400 | Tr:360, Ts:40 | 70% by Bag of Visual [40]
Ripe, Over-Ripe
Words
Very Good, Good -
2019 ’ ’ :20-
ELM Quite Good and Poor 297 |n/a MAPE:20-50% [115]
CONN Young Trees 284 | Tr:199, Ts:85 | 95.11% (Young) [(79]
Mature Trees 244 | Tr:159, Ts: 85 |92.96% (Mature)
CNN g?‘“pc’ Under-Ripe, 200 |n/a 85% [124]
ipe
ANN Under-Ripe, Ripe, 450 | Tr: 180, Ts: 270 | 94% (5]
Over-Ripe
FCM Unripe, Ripe, . .
Clustering Over-Ripe n/a |n/a Tr:73.07%, Ts: 71.04% [112]
Simple Unripe, Ripe, 83.8% by OPRID,
Logistic Over-Ripe 30 |n/a 86.8% by NLI [92]
Lazy Unripe, Under-Ripe, . . .
re Ripe. Over-Ripe 106 | Tr:95, Ts:11 | 63% [116]
2020 | NN Unripe and Ripe n/a |n/a 96% (training) [100]
Unripe, Ripening, 69% (DenseNet Sigmoid),
CONN Less-Ripe, Almost- 400 Tr: 253, Ts: 77, | 69% (ResAtt DenseNet), [111]
Ripe, Ripe, Perfect- Val: 80 64% (DenseNet+SE Layer),
Ripe, Over-Ripe 60% (AlexNet)
Unripe (Full), Unripe,
Almost-Ripe, Ripe, . .
CNN Ripe (Full), Over-Ripe, 400 | Tr:240, Ts: 160 | 71.34% [43]
Over-Ripe (Full)
R-CNN FEB Detection 100 | Tr:80, Val:20 |80% [90]
& Counting
CNN Ripe, Unripe 628 |n/a 95.6% [32]

to be continued in the next page
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Tab. 8. Comparative analysis of classification techniques. .. (continued)

Data-

Year | Classifiers Claésl;f;(s::;mn set Pl’iizisiztn Accuracy Ref.
Size
Fine
KNN 100%
‘Weighted
KNN 91.3%
SVM fine
Gaussian 80.4%
kernel
SVM
medium 97.8%
Gaussian
2021 | SVM Under-Ripe, Ripe, 46 |n/a [93]
medium Over-Ripe
G . 91.3%
aussian
kernel
SVM
Quadratic 95.7%
kernel
SVM
Cubic 97.8%
kernel
Quadratic 97.8%
iscriminant
CNN Crude, Ripe, Rotten 400 | Tr:320, Ts: 80 | Tr: 98%, Ts: 76% [9]
93% (Using BGLAM,
ROI2, & ROI3),
ANN . . 93% (statistical color
gsgf_i?lge’ Ripe, 270 |90 (ambiguity) | features) (2]
KNN P 93%
SVM 92%
LDA Tr: 86%, Ts: 85.4%
MDA Under-Ripe, Ripe Tr: 86.7%, Ts: 81.8% .
. ’ ’ 297 134
2022 | ANN Over-Ripe n/a Tr:99.1%, Ts:92.5% [134]
KNN Tr: 82%, Ts: 74.2%
ANN gnder'r.’“pe’ Ripe, 52 |[Tr:33, Ts:14 | 97.90% 18]
ver-Ripe
Bare soil, built-up
area, forest, water, Tr: 10574, 99.35% (Overall Accuracy), o
DNN immature and 13218 | 1; 9644 98.49% (Kappa Accuracy) [56]
mature oil palm
CNN Unripe, Ripe 490 | Tr:430, Ts: 60 | 87.9% [67]
YOLO Oil palm tree or Not 3100 |n/a 85.6% [83]
. Unripe, Under-ripe,
;?gﬁc‘)’ﬁeﬂ‘g Ripe, Over-Ripe, 57 | Tr:47, Ts: 10 ?éﬁplgé?fé:i?te ory) (58]
- Abnormal, Empty & gory
2023 Unripe, Under-ripe, Tr: 2908, 88.01% (YOLOv4-320),
CNN Ripe, Over-Ripe, 4160 | Ts: 417, 88.27% (YOLOv4-416), [109]
Abnormal, Empty Val: 835 88.94% (YOLOv4-512)
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3. Deep learning models

Deep learning models have emerged as the revolutionary in various fields such as the
healthcare, NLP, and Computer Vision, due to their ability to learn automatically from
hierarchical data. These models are inspired by the human brain in functionality and
structures, consisting of multiple layers of interconnected Al neurons that make classi-
fication and prediction process a success. CNN is very useful and well suited for the
tasks involving spatial data and images. AlexNet [65] and LeNet-5 [71] are the pioneer
architecture of CNN that demonstrated their effectiveness in image classification tasks.
Alfatni et al. (2018) proposed a real-time maturity grading system for oil palm FFBs
using SVM, ANN and KNN classifiers [4]. Table 9 presents a comprehensive overview
of deep learning models used in oil palm fruit maturity grading, including AlexNet,
LeNet, DenseNet, ResNet, Inception, CNN, RCANet, VGG-16, MLP, ANN, YOLO,
and YOLOv4, with their corresponding accuracies and references.

Tab. 9. Summary of deep learning models applied in palm fruit detection.

Year ‘ Deep Learning Model Accuracy Reference
2018 | AlexNet 100% [49]
95.11% (Young),

2019 ‘ LeNet 09.96% (Matuse) [79]
AlexNet 85% [124]
DenseNet Sigmoid 69%

ResAtt DenseNet 69% [111]
DenseNet + SE Layer 64%
AlexNet 60%
ResNet152 71.34% [43]

2020
ResNet-50 86%

ResNet-101 82% [90]
Inception V2 85%

Inception ResNet V2 32%

CNN 95.6% [32]
RCANet 96.88% [30]
ResNet-50 91.24%

2021 127
VGG-16 98.13% [ )
CNN Tr: 98%, Ts: 76% [9]
Multilayer Perceptron (MLP) 92.5% 134
ANN 97.90% 118
DNN 99.35% 56

5 -

2022 YOLOv4 70.19% 67
YOLO 85.6% [83]
YOLOv3 97.28%

YOLOv4 97.74% [123]
YOLOv5m 94.94%
DNN 91% [7]

to be continued in the next page
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Tab. 9. Summary of deep learning models. . . (continued)

Year ‘ Deep Learning Model Accuracy Reference
YOLOv4-CSPDarknet53 mAP 97.64%
2023 YOLOv4-Tiny mAP 83.57% [58]
YOLOv4-Tiny 3L mAP 90.56%
| YOLOv4-320 88.01% [109]

4. Conclusion

This review paper explores and examines the various classical methods and DL methods
used for the maturity grading of oil palm FFBs. Each journal paper has been analyzed
with its merits and demerits. It contains the exploration of deep knowledge regarding
image analysis techniques, deep learning algorithms and spectral imaging techniques.
This review highlights the advancements of existing approaches, including enhanced
efficiency, improved accuracy, and reliable consistency. It also observes the efficacy of
various color features used for image analysis. Additionally, the challenges or limitations
associated with each paper were also mentioned after implementing these techniques,
such as limited dataset size, the impact of environmental and regional variations. The
review also focuses on the future prospectives for further research and development in the
field of maturity grading of oil palm FFBs. This systematic review presents a valuable
remark for researchers to optimize the maturity assessment of oil palm fruits.
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Abstract Pupillometry measures pupil size, and several open-source algorithms are available to analyse
pupillometry data. However, only a few studies compared these algorithms’ accuracy and computational
resources. This study aims to compare the accuracy of computer vision-based algorithms (Swirski,
Starburst, PuRe, ElSe, ExCuSe algorithms) and the machine learning algorithm, DeepLabCut, to the
double-blinded human examiners (gold-standard). Training of DeepLabCut with different architectures
and a variable number of markers (2-9 markers) was done on an open-source dataset. The duration of
training was statistically longer for the ResNet152 model compared to the MobileNet model. The pupil
diameters in computer vision-based software such as PuRe, Starburst, and Swirski were statistically
different from human measurements. MobileNet 2 and 3 marker models were the closest to the human
measurements. In conclusion, this work highlights the efficiency of lower marker models based on
MobileNet architecture in DeepLabCut, which consumes fewer computational resources and is more
accurate.

Keywords: machine learning, deep learning, pupillometry, DeepLabCut, MobileNet, computer vision.

1. Introduction

Pupillometry measures pupil size changes in response to external stimuli or internal
states [8,33]. Pupil size changes with bright light, cognitive load, attention, memory,
internal state, emotional and neuromodulatory changes [15,16,19]. Pupillometry is used
both clinically and in basic science research to evaluate neurological function and in the
diagnosis of attentional disorders [10,30]. Neuroscience research in both animal models
and humans has identified that an increase in activity at locus coeruleus and release of
norepinephrine are causal in pupil diameter changes. Some researchers even use pupil
diameter as a surrogate for locus coeruleus activity [6,20].

Most methods of pupillometry use conventional image processing-based techniques
like segmentation, edge detection, and ellipse fitting with thresholding followed by con-
tour fitting. Recent studies, however, have employed sophisticated machine learning-
based algorithms such as convolutional neural networks or generative adversarial net-
works, as these machine learning algorithms give superior accuracy values. [2,4,14,21,28].
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Some studies have analysed the efficacy of these analytical techniques to determine the
computational demand as well [21]. Many open-source pupillometry software are avail-
able that use various mechanisms to analyse pupil diameter, such as PupilEXT, Star-
burst, ExCuSe, ElSe, PuRe, and PuReST [7,35]. A recent study validated this software
and found that the ExCuSe, ElSe, PuReST, and PuRe algorithms attained adequate
accuracy for pupil diameter measurement [35]. The Starburst algorithm detected many
false peaks and produced highly variable results. The Swirski algorithm failed to detect
the pupil in the 630nm spectrum.

Among machine learning applications, both supervised and unsupervised learning
approaches are present [13]. A recent experiment using a deep learning algorithm called
DeepLabCut garnered interest due to its applicability in a variety of experimental vari-
ables, broad user base with active software development, and ease of use due to its
graphical user interface based on Python [3]. Here, the experimenter manually places
the markers on the pupil diameter. It employs a transfer learning approach and requires
less data (30 frames) compared to other approaches requiring thousands of frames for
training, making it an attractive option for pupillometry data analyses [24]. DeepLabCut
was initially developed as a pose estimation software in biology/behavioral /neuroscience
research. It has also been used to detect animal behaviour and movement [18]. It has
been applied to pupillometry research only recently [24]. Privitera et al. developed a
low-cost (approximately 300 euros) Raspberry Pi setup and pupillometry software to
analyse pupillometry data. They trained a machine learning model (Deep LabCut with
11 markers) using ResNet to quantify pupil diameter utilizing the DeepLabCut library.
However, the reliability of DeepLabCut compared to other open-source software, the
impact of the number of markers on the accuracy of the measurements, and the usage
of computational resources are not known. Hence, this study is designed to address the
following issues.

A. To assess the computational efficiency of DeepLabCut architectures and models.

B. To evaluate the accuracy of the DeepLabCut models (ResNet, and MobileNet archi-
tecture-based models with various markers ranging from 2-9 markers) in comparison
to other open-source pupillometry software and human examiners measuring the pupil
(considered as the gold-standard).

C. To benchmark current open-source algorithms against the gold-standard.

2. Methodology

2.1. Experimental design

We have used data from an open-source dataset published in a previous publication by
Privitera et al. [24]. In brief, mice on C57 background (n = 17) of age 2-4 months
were head restrained, and changes in pupil diameter were recorded using a Raspberry Pi
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NoIR V2 camera under dark conditions with IR and UV lights. In the current manuscript,
the DeepLabCut models were trained using 30 data frames and tested them on 20 dif-
ferent frames snipped randomly from different videos made by Privitera et al. Random
test frames were selected to avoid temporal bias and capture different phases of pupil
dilations. However, the same test frames were used to test all the models evaluated in
this study. In a previous study employing DeepLabCut, only 30 frames or 150 frames of
data were used [22,24]. During the training phase, the computational resources being
consumed were measured using the weights and biases tool (WandB [32]). After train-
ing DeepLabCut models based on various deep convolutional neural architectures like
ResNet 50, ResNet 152, and MobileNetV2. Later, compared the pupil measurements of
these DeepLabCut models to open-source algorithms as well as human examiner mea-
surements of pupil diameter for accuracy check. The distance between two points on
the pupil was measured to calculate the diameter, followed by inference of radii, and
an average was taken in cases where multiple markers were used. Human examiners
measured the pupil diameter in the same frames used for testing DeepLabCut and other
open-source software using ImageJ version 1.53 (a National Institute of Health algo-
rithm). The distance was measured in pixels and converted to millimeters using the
ground-truth values derived by Privitera et al.

For measurement purposes, the data were measured in pixels and converted to mm.
The distance between the two tracked calibration points in pixels was calculated using
the formula:

a7 = (@B - aB )+ (B - B, W

where xp", yp , i = 1,2, are 2 and y coordinates of the calibration points P.i, Pea,
respectively, in pixels. Privitera et al. advise using median values for these calculations.
The absolute dimension of the calibration object in mm (d™™) has to be divided by dP*

to obtain the pixel-to-mm conversion ratio:

d mm

drx’

mm/px _

(2)

ratio

and z and y coordinates of all tracked points P; at each frame are multiplied by the
conversion ratio, resulting in a metric description of the tracked points:

mm px : . mm/px
Zp, = xp X ratio ,
mm px ; mm/px
yp," = yp, xratio . (3)

All the data measured in pixels by human examiners, as well as the algorithms, were
individually converted to millimeters using the above formulae.
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2.2. DeepLabCut and deep convolutional neural networks (DCNNs)

DeepLabCut, a Python-based framework, was used to create the DCNN models. A vari-
able number of markers from 2 to 9 were used to generate the training dataset for the
DCNN models. The principle of this method is based on the concept of transfer learning,
that is, training pre-trained models for a different task. The following models were used
here: ResNet50, ResNet152, and MobileNet V2 [9,12,26]. After training, the DCNN
models render the markers and output the location of each marker on each frame, from
which the pupil radius is calculated. The hyperparameters used are mentioned below.

Markers Markers were used on the pupil to train the DCNN models, ranging from 2
markers to 9 markers. An additional two markers on the ends of the eyes were used
to establish the ground truth. The reason for the usage of different types of labeling
is to improve the accuracy while calculating the pupil radii.

Iterations The number of training iterations is 30,000.

Learning rate scheduler The learning rate used in training approach follows a multi-
step schedule. The rate is adjusted at specific iterations, a strategy that enhances the
training process’s efficacy and performance.The learning rates were 0.005 and 0.020,
while the respective iterations were 10000 and 30000.

Batch size The number of samples the model processes before each update, known as
the batch size, is set to 1. Learning rate decay gradually diminishes the learning rate,
preventing the model from overshooting the loss function’s minima. In this case, for
every 30,000 iterations, the decay is utilized.

Loss Lastly, the loss function used in this model is the Huber loss function, which
integrates the properties of mean squared error loss and mean absolute error loss.

2.3. Other open-source software

Most prominent open-source softwares, such as Swirski, Starburst, PuRe, ElSe, and

ExCuSe were used to compare their accuracy to that of the DeepLabCut models. These

algorithms use template matching, edge detection, thresholding, or best-fit approaches.

Swirski This algorithm detects the light reflection and uses template matching followed
by thresholding and edge detection techniques to estimate the size of the pupil. Read-
ers are directed to the manuscript by Zandi et al. for a more detailed review [35]. The
parameters used in this study for Swirski are mentioned here: Minimum radius: 20;
Maximum radius: 140; Canny blur: 1.6; Canny threshold 1: 15; Canny threshold 2:
45; Perc inliners: 20; Inliner iterations: 2; Image Aware RANSAC: Yes.

Starburst This algorithm first detects the edges using Canny edge detection, followed
by interpolation of the center from the detected edges. Readers are directed to the
manuscript by Zandi et al. for a more detailed review [35]. The parameters used in
this study for Starburst are mentioned here: Edge threshold: 21; Number of rays:
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32; Minimum feature candidates: 7; CR Ratio (to image height): 10; CR window
(px): 433.

PuRe This algorithm fits a model to detect pupil diameter. Readers are directed to
the manuscript by Zandi et al. for a more detailed review [35]. The parameters used
in this study for PuRe are mentioned here: Image width (downscaling): 320; Image
height (downscaling): 240; Mean Canthi distance: 27.6; Maximum pupil size: 8;
Minimum pupil size: 2; Minimum radius: 50.

ElSe This algorithm uses edge detection and thresholding techniques followed by ellipse
fitting to identify the pupil diameter. Readers are directed to the manuscript by
Zandi et al. for a more detailed review [35]. The parameters used in this study for
ElSe are mentioned here: Minimum area (%): 0.005; Maximum area(%): 0.2.

ExCuSe The algorithm uses edge detection followed by mathematical estimations to
calculate the pupil diameter. Readers are directed to the manuscript by Zandi et al.
for a more detailed review [35]. The parameters used in this study for ExCuSe are
mentioned here: Ellipse Goodness threshold: 15; Maximum radius: 50.

Non-deep learning algorithms are based on mathematical approaches and don’t need

any training. Testing time has been reported to be under 100 milliseconds per frame

previously, and is similar to our anecdotal observations. Since comparing the accuracy
of the test was the prime objective, testing times were not compared and this is a caveat
that could be addressed in the future [27,35]. In the current study, a standard PC
was used (RAM: 8 GB DDR4-3200 MHz; CPU type AMD Ryzen™ 5 5600H.Graphics
card: NVIDIA GeForce RTX 3060, Laptop GPU with 6 GB GDDR6 VRAM, storage:
SSD/HD of 512 GB M.2 NVMe SSD).

ImageJ Examiners used ImageJ to measure the pupil diameter. Using line tool, and
functions: analyse and measure, the pupil diameters were measured.

WandB WandB has been a powerful tool in logging the hyper-parameters involved
in training a model over a dataset and storing the visualizations of a training run,
analysing the different metrics that come into play while developing a model through
training mainly when a graphics processing unit (GPU) is involved. This gives the
developer an overall and comprehensive view of the process in play during training and
also saves the training behaviour of GPU: power usage, memory allocated, time spent
accessing memory, temperature and utilization for future references and comparisons.
Training of DeepLabCut models was performed in Google Collab and recorded the
GPU parameters using WandB as in the literature [1].

Statistical analyses A comparison of the accuracy of the detection of pupil diameter
by various algorithms and human experimenters was done. A repeated measures
ANOVA test followed by post-hoc Bonferroni correction for comparisons between
the groups was used. T-tests and ANOVA were used to compare the computational
resource usage. Data are represented with mean and standard error of the mean
(SEM) values across this manuscript.
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2-marker model

3-marker model 9-marker model

a b c

Fig. 1. Mouse pupils with overlaid markers for different architectures in an anesthetized and head-fixed
mouse. (a) Pupil with two markers at both ends of the eye. (b) Pupil with three markers.
(¢) Pupil with nine markers placed around the eye.

3. Results

The training-related use of computational resources by these DCNN models in the
DeepLabCut module was assessed. Firstly, one of the experimenters marked specific
regions in the image as the borders of the pupils using a variable number of markers
(Fig. 1).

The GPU use times, as a measure of computational resource usage, for ResNet50,
ResNet152, and MobileNetV2 models were measured during training in DeepLabCut
using WandB. In most cases, the GPU usage was within the range 80-95%; hence, this
parameter was not statistically validated. There is a significant difference in GPU usage
durations during training between all the network architectures (F-statistic = 846; p <
0.001). The post-hoc Bonferroni test showcased significant differences between all three
network architectures in the usage of GPU resources during training. The GPU power
usage duration was longer in ResNet152 models (range = (147.5,153.5) min, mean =
151.3 min) vs. ResNet50 models (range = (61.5,78) min,mean = 74.4min). In com-
parison, MobileNet models were using the GPU resources for the least amount of time
(range = (47,70.5) min, mean = 59.7 min) (Fig. 2).

These results show that MobileNet models, regardless of the number of markers, con-
sume GPU resources for lesser duration compared to other neural network architectures.
An individual analysis of these different network architectures across different marker
models showed similar GPU consumption in ResNet152 (147.5, 151, 150, 151.5, 152.5,
151, 153.5 and 153.5min) and ResNet50 (61.5, 74.5, 76, 77, 75.5, 77, 78 and 75.5 min)
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Fig. 2. Comparison of ResNet152, ResNet50 and MobileNet on the duration of use of graphics processing
unit (GPU) during training in the DeepLabCut. (a) Three models together. MobileNet models
utilize the least time, whereas the ResNet152 models the most and ResNet50 models are in
between. (b) ResNet50 models showcase a similarity in GPU usage time across all models (2-9
markers). (c) ResNet152 models showcase a similarity in GPU usage time across all models (2-9
markers). (d) MobileNet models showcase a significant difference in GPU usage time for lower
marker models (2-5 markers) vs. higher marker models (6-9 markers). Blue arrows with stars
indicate the differences.

for different marker models (2-9 markers) (Fig. 2b and ¢). However, a decrease in GPU
usage duration was noted for lower marker models (2, 3, 4 and 5: 52.5, 53.5, 47 and
55min) vs. higher marker models (6, 7, 8, and 9: 67, 68, 70.5 and 64 min) in MobileNet
architecture (Fig. 2d). The differences in GPU usage times were significantly different in
MobileNet lower and higher models (Mean+SEM values, lower vs. higher: 52+1.74 min
vs. 67.384+1.34 min, t-statistic = 5.12,dy = 3,p < 0.05; df — number of degrees of free-
dom). This suggests that lower marker models of MobileNet architecture consume the
least computational resources of all the DeepLabCut models.

After training the models, the accuracy of these models was tested on a set of 20
images from different mice (Fig. 3). As the gold standard for comparisons the human
examiners’ measurements of pupils were considered. The two examiners were double-
blinded and weren’t involved in any part of the experiments. Examiners used ImageJ
software, and the values determined by the examiners were averaged to arrive at a
single value and to enable statistical comparisons. The inter-examiner variability in
measurements was less than 0.7% across all the frames. The mean value of pupil diameter
found by the human examiners was 1.01 mm.

In addition to DeepLabCut models, the PuRe, Starburst, Swirski, ElSe, and ExCuSe
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Fig. 3. Comparison of all DeepLabCut architecture models and computer vision-based models to the
human examiner measures of pupil diameter. Three DeepLabCut-based architectures, including
ResNet50, ResNet152, and MobileNet, were compared to computer vision-based models and
human measurements. This includes: ResNet50 for 2-9 markers (R50-2M to R50-9M), ResNet152
for 2-9 markers (R152.2M to R152.9M), MobileNet for 2-9 markers (MNet.2M to MNet_9M), and
human examiners (Human). Blue arrows with stars indicate significant differences between groups
MobileNet vs. ResNet50; ResNet 50 vs. ResNet152 and lower marker models (2-5) vs. higher
marker models (6-9) of MobileNet.

were also tested to compare these models’ performance. The results of these models were
significantly different from the human measurements of the pupil diameter (p < 0.001,
Bonferroni post-hoc test, repeated measures ANOVA).

The repeated measures ANOVA showcased a significant difference between all the
models (F-value = 34.857,p < 0.001). Post-hoc tests using Bonferroni corrections
were performed for individual comparisons. All the DCNN-trained models were non-
significantly different from the pupil diameter values measured by examiners. However,
there was a significant difference in the pupil diameter measured using open-source algo-
rithms such as PuRE, Starburst, and Swirski in comparison to examiners (Mean+SEM
values: 2.10440.17, 1.59940.232, 2.987+0.185 vs. 1.01+0.1, p < 0.001, repeated mea-
sures ANOVA followed by post-hoc Bonferroni test). ExCuSe and ElSe were not signif-
icantly different in comparison to human examiners (Mean+SEM values: 0.80540.141,
1.16540.169 vs. 1.01+0.1). However, the mean values of ExCuSe and ElSe compared to
the mean of examiners vary by 20.3% and 15.3%. All the machine learning models were
non-significantly different from the examiner’s measures. Among all the machine learn-
ing models, two marker models of ResNet50 (0.983+0.099), ResNet152 (0.96440.098),
as well as the MobileNet model (0.99+0.102), showcased the least variance from the
examiners’ mean pupil diameter (1.0140.1) and their means varied by 2.6%, 4.5%, and
1.98%, respectively, from the mean measurement of examiners. Three marker models of
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all architectures followed the two marker models closely (Mean+SEM values: ResNet152
— 3 marker: 0.966+0.099; ResNet50 — 3 marker: 0.961+0.097; MobileNet — 3 marker:
0.973+0.104). The 2 and 3 marker models were more accurate in detecting the pupil
diameter than models with a higher number of markers.

The measurements of memory consumption made with WandB indicated that the
DeepLabCut models, MobileNet models, specifically the lower marker models from 2 to
5 markers, consume less memory resources than other models.

4. Discussion

The data showcased that among the DeepLabCut models, MobileNet models, specifi-
cally the lower marker models from 2 to 5 markers, consume less memory resources.
Mainly, the accuracy of these models were compared to open-source pupil measurement
software and human observers. The accuracy of the MobileNet 2 marker model is shown
to be closest to that of human observers. All open-source pupillometry software tested
here has either overvalued or undervalued the pupil diameter compared to human ex-
perimenters. ElSe and ExCuSe were the closest in terms of performance as compared to
human observers. DeepLabCut toolbox has been used mostly in animal pose estimation,
and only recently has it been used to analyse pupil data [18,24]. Results show that the
error in pupil diameter increases with the increase in the number of markers across all
three network architectures in the DeepLabCut. This error could be due to the intrin-
sic nature of deep learning models, where a balance between the number of markers (a
surrogate for the learnable parameters), the use of definite architectures (a surrogate for
the complexity of the models), and the number of frames used in training determine the
learning efficiency and prevent over/underfitting. Since the amount of training data was
the same in experiments for any architecture and number of markers (2 — 9), this could
have impacted the model’s ability to learn and led to over/underfitting. These may
cause a decrease in the performance of models using a higher number of markers [11].
There is a difference in the amounts of parameters used by ResNet 50 (23.5 million) vs.
ResNet 152 (58.3 million) vs. MobileNetV2 (3.4 million). The lower number of parame-
ters in MobileNetV2 decreases the training duration/computational resources compared
to other deep learning models. The depthwise convolutions with fewer parameters in Mo-
bileNetV2 increase efficiency and decrease computational costs [17,26]. These findings
suggest that while larger models (e.g., ResNet-152) offer a theoretical advantage in com-
plex tasks due to their higher capacity and can handle vanishing gradient issues. While,
the simpler MobileNetV2 architecture performed equally well for this specific task with
much lower computational demand. This makes MobileNetV2 the most efficient choice
for real-time pupillometry or scenarios where hardware resources are limited without a
significant sacrifice in accuracy [29].

It is difficult to compare the mathematical superiority of DeepLabCut with other
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techniques because each technique uses different mathematical approaches and principles.

However, here is a comparison of some key features of DeepLabCut that make it stand

out from the other techniques.

Deep learning Learning complex patterns and features from input data is common in
DeepLabCut and other deep learning techniques. These traits increase the adaptabil-
ity of DeepLabCut to different lighting conditions, pupil sizes, and head positions.
Thus DeepLabCut is more robust and accurate than traditional computer vision al-
gorithms.

Flexibility DeepLabCut provides flexibility and automatically extracts features that are
unlike traditional computer vision algorithms, which often have fixed and predefined
features.

Small training data DeepLabCut requires only a small amount of data for training as
opposed to other machine learning algorithms, and it can also perform with better
accuracy and robustness. This is because DeepLabCut can learn from a diverse set
of examples and generalize to new conditions.

Real-time processing DeepLabCut can process images in real-time on a variety of
platforms, making it suitable for applications that require accurate pupil detec-
tion [31].

Model architecture DeepLabCut models can be designed and optimized for specific
tasks and data types. This allows for better performance and generalization compared
to traditional computer vision algorithms, which often use generic and fixed models.

Adaptability DeepLabCut models can be re-trained and fine-tuned for new datasets
or applications, making them adaptable to changing requirements and conditions.
Open source software tools tested here are based on traditional computer vision tech-

niques such as template matching, thresholding, edge detection, and curve fitting. The

pros and cons of using simple computer vision and deep learning techniques are detailed
in the review by O’Mahony et al. [23]. Briefly, there are several advantages to using
deep learning models, such as adaptability to lighting, movement artifacts, using trans-
fer learning approach to train using fewer data points where less data is available, using
lightweight architectures such as MobileNet could enable real-time calculations and mak-
ing algorithms scalable/transferable between applications. Some disadvantages to deep
learning models include high computational costs, long training times, inefficient real-
time processing in some architectures, and overfitting in some architectures that require
careful tuning of hyperparameters. Recently, a web application using novel convolutional
neural networks and AdaBelief optimizer was launched, where the user needs to upload
data on the website only and will be given the results [25]. This application was based

on newer algorithms such as U-Net and achieved accuracy rates above 70-80% I[5, 34].

However, the algorithm used a semantic segmentation method that takes into consider-

ation the grayscale values to segment and falls short if the grayscale values are not very

different [25].
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In conclusion, results show that DeepLabCut, based on MobileNet architecture with
a lower number of markers, consumes fewer computational resources during training.
Also, the same DeepLabCut architecture with a lower number of markers (2 markers)
is more accurate and closer to the values measured by humans than other architectures.
This study establishes that with the least amount of training, which spans only an hour,
using only a few frames, DeepLabCut can outperform current open-source software and
its results are close to the values achieved by a human examiner.
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