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Abstract Brain tumors (BT) are considered the second-principal cause of human death on our planet.
They pose significant challenges in the field of medical diagnosis. Early detection is crucial for effec-
tive treatment and improved patient outcomes. As a result, researchers’ studies that deal with tumor
detection play a vital role in early disease prediction in the field of medicine. Despite advancements
in medical imaging technologies, accurate and efficient classification of BT remains a complex task.
This study aims to address this challenge by proposing a novel method for brain tumor classification
utilizing ensemble learning techniques combined with feature extraction from neuroimaging data. In
the present paper, we present a novel approach for brain tumor classification that contains ensemble
learning methods following the extraction of important features from brain tumor images. Our method-
ology involves the preprocessing of neuroimaging data, followed by feature extraction using descriptor
techniques. These extracted features are then utilized as inputs to ensemble learning classifiers. Experi-
mental results demonstrate the efficacy of the proposed approach in accurately classifying brain tumors
with high precision and recall rates. The ensemble learning framework, combined with feature extrac-
tion, outperforms several benchmark models and methods commonly used in brain tumor classification,
including AlexNet, VGG-16, and MobileNet, in terms of classification accuracy and computational effi-
ciency. The proposed method that integrates ensemble learning techniques with feature extraction from
neuroimaging data offers a promising solution for improving the accuracy and efficiency of brain tumor
diagnosis, thereby facilitating timely intervention and treatment planning. The findings of this study
contribute to the advancement of medical imaging-based classification systems for brain tumors, with
implications for enhancing patient care and clinical decision-making in neuro-oncology.

Keywords: brain tumor, Histogram of Oriented Gradients, Discrete Wavelet Transform, ensemble
learning.

1. Introduction

The brain is the principal organ of the nervous system, and it is the most complex
organ in the human body. It consists of nerve cells and tissues to control the most
basic functions of the body, such as muscular movement, breathing, and senses. For
the mentioned reasons, early detection of brain tumors represents a crucial task in the
medical field [45]; a brain tumor is a form of cancer that affects the central nervous
system, according to the definition provided by the World Health Organization (WHO).
It was categorized as a deadly disease in 2016 [2]. In general, a brain tumor is described
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as a collection of abnormally growing brain cells. The purpose of this study is to classify
cancer in MRI images.

The classification of brain tumors is one of the most challenging tasks in the medical
field because various criteria are dependent on the structure of the nervous system’s
tissue and cells [50]. Currently, the development of technology and the digitalization of
medical devices help doctors properly detect and classify brain tumors in the early stages;
the field of machine learning is focusing on this task. Rajan and Sundar [36] present an
architecture for classifying brain cancers using support vector machines (SVM) classifiers
and feature extraction like K-means clustering. This classifier is integrated with Fuzzy
C- Means (KMFCM) and active contour by level set for tumor segmentation. In another
study, Murugan et al. [5] proposed a system including enhancement, transformation,
feature extraction, and classification with machine learning models.

The architectures of deep learning are a subset of machine learning that allows com-
puters to make predictions and describe conclusions based on data thanks to their capac-
ity to learn data representations. These methods are widely utilized in medical imaging
categorization and are considered one of the most important computational intelligence
techniques. In this context, Das et al. [11] presented an approach that consists of two
principal steps. First, preprocess the images using different image processing techniques,
then classify the preprocessed images using convolutional neural networks (CNN). In this
regard, Paul et al. [34] applied two types of neural networks, fully connected and convo-
lutional neural networks, which were used to classify brain images with different tumor
types. Thus, Shree et al. [22] proposed a probabilistic neural network (PNN) approach
that relies on feature extraction techniques (such as noise suppression, gray level co-
occurrence matrix (GLCM), and the growth of brain tumor region segmentation based
on DWT) to reduce complexity and improve performance. However, the field of deep
learning has several limitations. Firstly, there is a strong use of neural network methods
in this field of brain tumor classification, with the lack of feature extraction functions;
secondly, deep learning architectures do not work perfectly with small datasets; they
need greedy datasets; and finally, deep network training necessitates the meticulous
tuning of numerous parameters, and suboptimal tuning can lead to overfitting or under-
fitting. These restrictions do not allow researchers to find better performance metrics.
In consequence, we thought about a method that gives us better prediction scores.

Recently, new research has been based on the extraction of features from the image,
which will be fed to the classifiers. Mircea et al. [15] have proposed an approach using
different wavelet transforms and support vector machines to detect and classify the brain
tumor. In this regard, Nabizadeh and Kubat [30] have studied a method based on the
extraction of features with the Gabor wavelet that is able to detect slices that include
tumors and delineate the tumor area. Another type of image feature extraction based
on the extraction of information from image textures is widely used in medical image
analysis. Singh et al. [43] proposed a hybrid technique for automatic classification of MRI
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images by first extracting the features using Principal Component Analysis (PCA) and
Gray-Level Co-occurrence Matrix (GLCM). The extracted features are fed as input to
a Support Vector Machine (SVM) classifier, which classifies the brain image as normal
or abnormal. Thus, LBP (Local Binary Pattern) is a commonly used technique for
texture description and pattern recognition in images [46]. Another well-known feature
extraction technique is the histogram of oriented gradients, which is a computer vision
and image processing technique used to detect objects [25].

In this study, we have proposed an approach based on ensemble learning using the
stacking model, we utilized two feature descriptors, HOG and DWT, to capture dis-
criminative information from images for use as inputs to classification algorithms. This
not only accelerates the training of these models but also helps prevent overfitting. The
extracted characteristics were combined into a vector, evaluated, and selected using a
RandomForestRegressor to evaluate and select the most essential features. This process
reduces the dimensionality of our dataset, improves the interpretability and reliabil-
ity of our model’s decisions, and provides refined inputs for subsequent models. This
process ultimately enhances the overall effectiveness and robustness of the classification
framework. The proposed system recorded a more satisfactory classification performance
reaches 94%. It appears that the functionalities used in this classification task have an
important and effective role. Therefore, our approach demonstrates significant value in
the early prediction of AD through the advancement of computer vision and machine
learning methods, applied within the medical domain.

The following is how the rest of the paper is organized. The related studies are pre-
sented in the second Section. Also, our main contribution introduced in this study is
described in the final part of that Section. It is followed by a description of the methods
and techniques used in our approach in Section 3. Within this Section, in Subsections 3.1
and 3.1.1 the dataset used is presented and descried, and in Subsection 3.1.2 the data pre-
processing, including data augmentation, is presented. In the following Subsection 3.2
the features derived from images are described, including the Histogram of Oriented
Gradients in Subsection 3.2.1, the Discrete Wavelet Transform in Subsection 3.2.2, and
their concatenation and feature selection with the RandomForestRegressor in Subsec-
tion 3.2.3. The classification methodology is presented in Subsection 3.3, divided into
machine learning methods in Subsection 3.3.1 and ensemble learning methods in Subsec-
tion 3.3.2. The whole Section 3 on materials and methods is concluded with its discussion
in Subsection 3.4.

The experiments and their results are presented in Section 4, with four Subsections:
4.1 on the experimental setting, 4.2 on performance evaluation measures, 4.3 on the
results and finally Subsection 4.4 on their discussion. The whole paper is concluded and
the perspective for future work is outlined in Section 5.
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2. Related work

The primary goal of this section is to review the existing research on employing extrac-
tion features, machine learning, and deep learning models to identify and classify brain
tumors. There are several works in this area that deal with the early prediction of brain
disease, which is based on computer-aided diagnostic methods (CAD) without surgery
or invasive methods. Sobhaninia et al. [44] proposed an architecture that is based on an
encoder layer and uses post-max-pooling features for residual learning for brain tumor
classification.

In this regard, there are several image-processing architectures interested in detecting
and classifying tumors. Our current research focuses on the early prediction of brain
tumors, which is similar to the work that will be cited. These studies belong to the
same medical field and use the same techniques and methods of computer vision and
infographics for this task. However our proposed method provided effective results,
surpassing various state-of-the-art experiments on the topic of brain tumors in terms of
accuracy.

Various deep convolution neural networks have already been trained are used to
extract deep features from magnetic resonance (MR) brain images. Kang et al. [19]
presented an architecture for classifying brain cancers using a collection of deep features
and machine learning classifiers. In this area, Deepak et al. [13] proposed a method
for classifying MRI images; this method is based on transfer learning by applying sev-
eral models of machine learning to the MRI image dataset of the brain tumor, which is
already pre-trained on a VGG-16 model of convolutional neural network. Despite the
accurate results of these methods, they remain poor, mainly when dealing with large
databases. Ari et al. [4] presented a method based on a pre-processing brain tumor
dataset (resize, crop lesion, segment lesion, etc.). Kaplan et al. [20] used a feature
extraction approach called Local Binary Patterns (LBP), which is a statistical image
processing technique that allows us to extract useful and important characteristics from
images. In the domain of computer vision, another approach that gives better results at
the classification level is based on the combination of methods like concatenation and
confusion of vectors of extracted features, there are several approaches use multiple tech-
niques combined to obtain a model more efficient and effective than a model built with
a single algorithm. Abbasi et al. [1] used techniques for segmentation and detection to
distinguish between different brain regions based on feature extraction from MRI images
or learning features like the local binary pattern (LBP) and the histogram of oriented
gradients (HOG). Another type of method based on deep learning proves to be very ef-
fective while managing vast amounts of data. Mohsen et al. [29] presented a new method
for classifying brain tumor images using a deep neural network (DNN) learning method
that used fuzzy C-means to segment the images, discrete wavelet transforms (DWT) to
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extract the features, principle component analysis (PCA) to reduce the dimensions, and
DNN for classification.

The majority of existing medical MR imaging research focuses on the automatic
classification and segmentation of tumor regions. Several researchers have recently pre-
sented various strategies for detecting and segmenting the tumor region in MR images.
Convolutional neural networks are powerful architectures based on deep convolutional
layers that automatically extract robust functionality from the input space related to
traditional neural network layers. Rehman et al. [40] proposed CNN models such as
AlexNet, GoogLeNet, and VGGNet to classify MRI images of brain tumors.

Timely, deep learning is generally applied in the medical industry. The fundamental
CNNs that are applied for classification tasks have similar architectures. A CNN ar-
chitecture is made up of a series of feed-forward layers that employ convolutional filters
and pooling layers, following the last pooling layer, CNN uses many fully connected
layers to turn the previous layers’ 2D feature maps into 1D vectors for classification.
In summary, CNNs rely on three characteristics. Firstly, each layer’s units get input
from the previous layer’s units, which are all in the same tiny neighborhood. This tech-
nique allows for the extraction of basic features such as edges and corners. Secondly,
in the subsequent layers, these features will be merged to detect higher-order features.
The concept of shared weights, which is the second crucial attribute, means employing
similar feature detectors throughout the image. Thirdly, CNNs frequently have many
sub-sampling layers, which are either advantageous or harmful because this information
varies for different situations according to the specific position of characteristics [41].

Although CNNs are beneficial in a variety of applications, they have several flaws,
particularly in the sub-sampling layers, which provide only a tiny amount of translational
invariance and lose the precise location of the most active feature detectors. A capsule
neural network (CapsNet) is a sort of artificial neural network (ANN) that can be used
to improve model hierarchical relationships in a machine learning system. To classify
brain tumors, Afshar et al. [3] proposed a model based on the architecture of CapsNet
that allows access to the tumor tissue without distracting it from the central target.

The majority of extant medical MR imaging research focuses on the automatic classi-
fication and segmentation of tumor regions. Several researchers have recently presented
various strategies for detecting and segmenting the tumor region in MR images; Table 1
represents previous work carried out on different datasets.

Recent research has shown that deep learning techniques are widely used in expert
and intelligent systems as well as in medical image analysis. The methodologies de-
scribed previously presented limits at the level of data processing, more precisely in the
feature extraction phase. These approaches took into account only the binary catego-
rization (normal and abnormal) of the MRI image dataset, and they ignored extracting
the crucial features and from the images. In addition, throughout the course of our
investigation, it became evident that the referenced models exhibit a scarcity of data,
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Tab. 1. Related work approaches to classification methods, feature extraction, and accuracy of brain
tumor classification.

Authors Feature Extraction and Classification Methods Dataset Accuracy

Diaz-Pernas et al. [14] 2021 Multi-pathway convolutional neural network 3064 MRI 97.3%

(CNN)
Das et al. [12] 2019 Advanced Deep Learning-based Solutions 3064 MRI 94.39%
(CNN)
Paul et al. [34] 2017 Fully connected and CNN 3064 MRI 91.43%
Kumar and Shree. [22] 2018 Probabilistic neural network (PNN) 650 MRI  95%
Khawaldeh et al. [21] 2017 CNN 587 MRI  91.16%
Hemanth et al. [16] 2019 CNN 220 MRI  94.5%

intricate computational processes, and suboptimal performance. For the mentioned rea-
somns, it is recommended to search for a new approach that exceeds these constraints and
gives us better prediction scores.

Real-time performance is a critical factor in medical diagnosis, particularly in emer-
gency situations where timely and accurate decisions are essential for patient treatment
and prognosis. Evaluating a model’s inference time and computational resource re-
quirements ensures its suitability for real-world applications. Models designed for such
scenarios must balance speed and accuracy to provide reliable diagnostics without com-
promising computational efficiency [23].

The main contribution of this study can be summarized as follows: during the pre-
processing phase, we employed common computer vision and infographic techniques to
facilitate subsequent tasks. Then, we utilized two descriptors, HOG and DWT, to ex-
tract relevant and significant features, accelerate model training, avoid overfitting, and
thereby enhance the overall effectiveness and robustness of the classification framework.
These extracted characteristics were combined into a vector, evaluated, and selected us-
ing a RandomForestRegressor, and then considered as inputs for classification machine
learning algorithms. To validate the effectiveness of our approach, experiments were
conducted on a well-known brain tumor dataset, and the results were compared with
existing methodologies. Our approach has shown considerable value in the early pre-
diction of brain tumors through advancements in computer vision and machine learning
methods and their applications in the medical domain.

3. Material and methods

The general design of our suggested method is described in this section. We have used
an approach that consists of two complementary main phases: feature extraction and
classification. The features recovered from the first phase will be considered, such as the
inputs from the machine learning classifiers of the second phase. The main objective of
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Fig. 1. Proposed architecture of histogram of oriented gradients, discrete wavelet transform, and en-
semble learning (Stacking) for brain tumor classification.

this study is to find a higher classification score. Figure 1 illustrates the architecture
of our suggested approach to classify brain tumors, which will be described in detail in
Sec. 3.3. We have detailed each component of the proposed approach with greater clarity
in the following Sections.

3.1. Dataset

The brain tumor dataset utilized in our research is crucial for classification, offering real-
world data reflecting clinical complexities. It enables algorithm development and evalu-
ation, facilitating supervised learning and serving as a benchmark for advancing medical
image analysis. In this research, we used the free Kaggle brain tumor dataset [32].

3.1.1. Data description

The dataset we have used contains 253 brain MRI images split into two groups: ‘yes’
contains 155 tumorous brain MRI images, and ‘no’ contains 98 non-tumorous brain
MRI images. We started to preprocess the dataset by applying imaging methods like
normalization, resizing, cropping, and augmentation, to facilitate the employment of the
following functions. These techniques applied in the data processing phase allowed us
to have 2065 images. Distribution of the dataset across different categories is presented
in Table 2.
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e

Fig. 2. Image representation of different stages of cropping images from the dataset: (a) original image;
(b) thresholded; (c) outer contour (green); (d) edge points (R, G, B, Y); (e) cropped image.

3.1.2. Data pre-processing

The trend of processing datasets containing images for predictive purposes has gained
prominence in the domains of computer graphics and computer vision [28]. In this
manuscript, we will use image-processing functions. The primary techniques used in
this part of the treatment will be discussed below.

Data crop: Nearly all of the images in our brain MRI datasets have undesirable
spaces. Hence, it results in subpar classification performance. Therefore, it is vital to
crop the pictures in order to eliminate unnecessary portions and use only the pertinent
information on [49]. In this study, we employed the cropping approach that computes
extreme points and returns a geographic subset of an object based on specifications
provided by an extent object. Figure 2 illustrates how the MR images were cropped
using an extreme point computation. This cropping method consists of five phases:
1° we load the original MR images. 2° We apply thresholding to the MR images in
order to create binary images. 3° We also undertake dilation and erosion processes to
reduce image noise. 1° We determine the four extreme points of the images (extreme
top, bottom, right, and extreme left) using the largest contour of the threshold images.
5% We crop the image based on the edge and extreme point data. Bicubic interpolation
is used to enlarge cropped tumor images.

Tab. 2. Division of the dataset of images into training, validation, and testing, and the tumorous and
non-tumorous classes.

No. of images Percentage of images [%]

Step TuI‘nor?us7 Non—t‘umf)rous, Total ‘ Tur‘norc’)us, Non—t}lmf)rous, Total
yes no yes no

Train 885 560 1445 61.3 38.7 70

Validation 190 120 310 61.3 38.7 15

Test 190 120 310 61.3 38.7 15

Total | 1265 800 | 2065 | 613 38.7 | 100
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Fig. 3. Example of data augmentation: (a) vertical flip; (b) horizontal flip; (c) brightness increased;
(d) vertical shift; (e) rotation +90°; (f) rotation —90°.

The cropping function plays a crucial role in feature extraction for classification tasks.
Cropping involves removing the outer parts of an image to focus on the most relevant
region, which can enhance the performance of classification algorithms. By isolating the
area of interest, cropping reduces noise and irrelevant information, leading to a more
accurate representation of the essential features. This process not only helps in con-
centrating on the significant aspects of the image but also reduces the computational
complexity by decreasing the amount of data that needs to be processed. Consequently,
cropping contributes to improving the efficiency and accuracy of the classification model.
Data augmentation: Due to the relatively modest size of our MRI dataset, we per-
formed image augmentation to increase the size of the dataset. Data augmentation is a
technique that involves transforming the original dataset to produce a synthetic dataset,
it is a procedure that generates additional training data by applying transformations to
existing data to obtain new data [26]. This method involves creating numerous duplicates
of the original image with various scales, orientations, locations, brightness, and other
characteristics. Results from previous related work showed that augmenting existing
data can increase accuracy model classification, rather than collecting new data. Fig-
ure 3 illustrates the augmentation techniques applied to the original dataset to generate
the new dataset.

The function of image data augmentation is highly beneficial for feature extraction in
classification tasks in machine learning. Data augmentation involves creating new train-
ing samples by applying random transformations such as rotation, scaling, translation,
and flipping to the original images. This technique helps to increase the size and diversity
of the training dataset, which is particularly valuable when dealing with limited data.
By providing more varied examples, data augmentation allows the model to generalize
better to new, unseen data, thereby enhancing its robustness and accuracy. Moreover, it
helps to prevent overfitting by ensuring that the model does not memorize the training
data but learns to identify the underlying features that are relevant for classification.
Consequently, image data augmentation is a crucial step in improving the performance
and reliability of machine learning models in image classification tasks.
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3.2. Feature extraction

Feature extraction refers to the process of transforming raw data into digital features.
These features will be processed while preserving the information from the original
dataset. This method performs better than directly applying machine learning to raw
data [47]. After the dataset had been pre-processed, we used a descriptor-based approach
as a feature extractor to extract pertinent characteristics, speed up the models training;
avoid overfitting, and thereby augmenting the overall effectiveness and robustness of the
classification framework. Then, we concatenated these characteristics gleaned by HOG
and DWT to create a unified input suitable for feeding into the final classifier. Lastly,
we trained these extracted features using a RandomForestRegressor model to select the
crucial features. In the following two sections, we describe the two descriptors used in
our approach HOG and DWT.

3.2.1. Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a feature descriptor used in computer vi-
sion and image processing for object detection; in other words, HOG is a technique for
characterizing textures and shapes in an image, similar to Canny Edge Detector and
Scale-Invariant Feature Transformation (SIFT) [33].

The HOG has the purpose of quantifying the distribution of local gradient orientations
in an image. This approach counts occurrences of gradient orientation in localized parts
of an image. This method is comparable to edge orientation histograms, scale-invariant
feature transformation descriptors, and shape contexts, but it is more accurate because
it is computed on a dense grid of equally spaced cells and employs overlapping local
contrast normalization. Four types of normalization are explored. The unnormalized
vector containing all the histograms of a single block is denoted by v, its k-norm by
|v]|k, and e is a low-value constant. The normalization factor is then defined by:

e [.2-norm:

v

f=—— 1)

[ 2
[[v]l3 + €2

e L2-hys: L2-norm followed by clipping (limiting the maximum values of v to 0.2) and
renormalizing.
e [L1-norm:
v

ol +e

I=\rhre ®)
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Fig. 4. Representation of features extracted from brain images by the HOG algorithm. (a) Original
image; (b) representation of the image with the application of a HOG; (c) gradients in a cell;
(d) Histogram of Oriented Gradients in six directions in 3D.

The L2-Hys, L2-norm, and Ll-sqrt norms achieve similar performance, while L1-norm
performs worse, but still significantly outperforms no normalization. In our approach
we applied the first L2-norm normalization. Figure 4 illustrates the application of the
HOG algorithm to our dataset.

The integration of the HOG function into our approach holds significant importance
for several reasons. Firstly, HOG is widely acknowledged for its ability to capture texture
and shape information within an image, making it a powerful tool for feature extraction.
By leveraging HOG as an image descriptor in our methodology, we can extract relevant
and discriminative features, which are crucial for the task of medical image classification.
Furthermore, HOG provides a compact representation of the extracted features, aiding
in reducing the dimensionality of the data and enhancing the efficiency of subsequent
classification algorithms. By incorporating HOG into our approach, we can improve the
quality of the extracted features and, consequently, the accuracy and robustness of our
classification model. For our task, we aggregated the features extracted by HOG into a
vector of dimensions (1, 1,1000) to later concatenate it with another vector extracted by
DWT, which has the same dimensions.

3.2.2. Discrete Wavelet Transform

Discrete wavelet transform is a data transformation technique that allows the signal to be
represented in the form of wavelet coefficients, which can be useful for data compression,
feature detection, noise reduction, frequency analysis, and other tasks [27].

Nowadays, DWT is widely used to extract the most relevant features at different
orientations and scales from temporal signals or time series data, which can facilitate the
modeling and analysis of these data, i.e., Gabor-wavelets capture the local structure of
the image corresponding to spatial frequency (scales), space localization, and orientation
selectivity [24]. The wavelet coefficients obtained through DWT can be used as features
to train machine learning models for classification, regression, or other data analysis
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tasks, as it provides localized time-frequency information of a signal using cascaded filter
banks of high-pass and low-pass filters to extract features in a hierarchical manner [30].

The principle of the algorithm consists of dividing the image into four blocks at each
iteration: three blocks concerning the details of the image, and the fourth corresponding
to the most important information for the eye (low frequencies), which serves as a basis
for the next iteration. In mathematics, a wavelet ¢ is a summable square function of
Hilbert space ¥.2(R), the more often oscillating and with zero mean, chosen as a multi-
scale analysis and reconstruction tool. Wavelets are generally found in families, made up
of a mother wavelet and the set of its images by the elements of a subgroup of the group
of affine transformations of R". We thus define a family 15 , where (s,7) € RT™* x R, of
wavelets from the mother wavelet 1:

Vi€ R,y (t) = %wtj

By extension, families of functions on submanifolds of R invariant by a transformation
group locally isomorphic to the affine group can also be qualified wavelet families.

We use wavelet coefficients for generating the initial features. The wavelet trans-
form is traditionally used for feature extraction. The provision of localized frequency
information about a function of a signal is the main advantage of wavelets and is par-
ticularly beneficial for classification. Earlier, wavelets were used as a feature extraction
method for discrimination; they have advantages in fields like image processing, image
watermarking, medical imaging, image compression, and many more. They are also
used to denoise medical images. Orthogonal wavelets have always played a main role in
biomedical image processing [48].

(4)

By applying DWT, we are able to decompose an image into the corresponding sub-
bands with their relative DWT coefficients. The DW'T is implemented using cascaded
filter banks, in which the low pass and high pass filters satisfy certain specific con-
straints [8]. At each scale of feature extraction by this technique, there are four sub-
band images (LL, LH, HH, and HL). The LH, HL, and HH sub-bands may be thought
of as the detailed components of the image, while the LL sub-band can be thought of
as the approximation component. For DWT decomposition at the next scale, only the
sub-band LL is utilized for feature extraction. Additionally, the output feature vector
uses the LL sub-band at the final level. Figure 5 illustrates DWT decomposition and its
application to our dataset.

The use of DWT in feature extraction for classification tasks offers several key ad-
vantages. DWT is highly effective at capturing both spatial and frequency information
from images, making it an excellent tool for identifying relevant features. This transform
decomposes the image into different frequency components, allowing for the isolation of
important details and patterns at various scales. By leveraging DWT, we can extract
multi-resolution features that are essential for distinguishing between different classes in
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Fig. 5. Representation of the three steps of the features extracted from the brain image by the DWT
algorithm.

medical image classification. Additionally, DWT helps to reduce the dimensionality of
the data, which not only enhances computational efficiency but also mitigates the risk
of overfitting. Consequently, incorporating DWT into our feature extraction process can
significantly improve the accuracy and robustness of the classification model.

3.2.3. Concatenation

Following feature extraction, the subsequent procedural step is the concatenation of
the extracted features. In the field of machine learning, the concatenation of input
vectors in a model is a function that combines the inputs into a single input vector,
puts them end to end, and then processes them according to the chosen method [37].
This technique allows for the combination of various sources of information, capturing
diverse and complementary aspects of the data, thereby enhancing the overall data
representation. Additionally, this approach can aid in reducing the dimensionality of
the data by combining multiple features into a single vector, thus facilitating further
processing and analysis. Furthermore, concatenating features can lead to more robust
and effective classification models by integrating information from different modalities
or sources, potentially resulting in improved prediction performance [39]. In our study,
we concatenated a vector of (1.1.1000) of feature extracted by HOG with a vector of
(1.1.1000) of feature extracted by DWT into a vector of (1.1.2000), then evaluated them
by a RandomForestRegressor to select the most relevant ones, reduce the dimensionality
of our dataset, and bolster the interpretability and dependability of our model’s decisions.
Finally, the resulting features were employed as inputs for the classifier. In this research,
we employed a 10-fold cross-validation approach to ensure the reliability and statistical
significance of the results, as well as to rigorously evaluate the model’s performance.
The dataset was divided into 10 equal subsets (folds). In each iteration, one fold was
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designated as the test set, while the remaining nine folds were used for training the model.
This process was repeated 10 times, with each fold serving as the test set exactly once.
By averaging the performance metrics across all iterations, we achieved a comprehensive
and unbiased assessment of the model’s effectiveness.

3.3. Classification

Automatic classification, or supervised classification, is the algorithmic categorization of
objects based on statistical data [6]. In our study, our goal is to classify brain tumors.
We started by processing our dataset using usual image processing functions such as
normalization, resizing, augmentation, and cropping.

Then, we applied two descriptor functions, HOG and DWT, to extract more informa-
tion and to facilitate the task at the classification stage, to accelerate model training, to
prevent overfitting, and thus to enhance the overall efficacy and resilience of the classifi-
cation framework. The classification step consists of applying several machine learning
classification models to our extracted features in order to find a model with high classi-
fication quality measures, that would give good results of identification of brain tumors.

Now we shall describe the elements of the classification methodology in detail. Its
general structure has been already shown in Fig. 1, p. 9.

3.3.1. Machine learning models

Machine learning models can be conceptualized as algorithms trained to discern patterns
in novel data and formulate predictions. These models are mathematically represented
as functions designed to process input data, predict outcomes, and yield corresponding
outputs [17]. Generally, these models undergo training on a designated dataset and are
parameterized to extrapolate predictions for previously unseen data. Below, we list the
different classification models used in our approach.

Support Vector Machine: It is one of the most efficient classification algorithms,
having been proposed by Vapnik [9]. SVM converts the initial data space into a new space
with a higher dimension using the kernel function K(z,,z;). The following definition
fits the hyperplane function used to separate the data:

N
f(xt) = Z anynK(xna xi) + b7 (5)
n=1

where z,, is support vector data (features extracted from brain MR image), «,, is La-
grange multiplier, and y,, represents a target class.

Gaussian Naive Bayes: The machine learning classifier known as the Naive Bayes
classifier operates under the assumption of conditional independence between the at-
tributes and the class [31]. In this study, one of our ML classifiers for classifying brain
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tumors is the Gaussian NB classifier. The conditional probability P(Y]X) in the Gaus-
sian NB classifier is determined as the sum of the individual conditional probabilities
under the naive independence assumption as follows:

P(Y) x P(X|Y)  P(Y)Ti_, PlailY)

P(Y|X) = ) = POX) (6)

where X is the presented data instance (an extracted deep feature from brain MR image)
which is represented by its feature vector (z1,...,2,), y is a class target (type of brain
tumor) with two classes (normal and tumor) for two MRI datasets ensemble learning
models.

K-Nearest Neighbors (k-NN): One of the simplest classification methods is k-NN.
It makes predictions right away using the training set that is memorized. For example,
to categorize a new data instance (a deep feature from a brain MR image), k-NN selects
the set of k£ objects from the training instances that are closest to the new data instance
by calculating the distance and assigns the label with two classes (normal or tumor).
The selection is based on the majority vote of its k neighbors for the new data instance.
The most popular methods for evaluating how close new data instances are to training
data examples are Manhattan distance and Euclidean distance [38]. In this study, we
applied the k-NN method using the Euclidean distance metric. Data points z and y’s
Euclidean distance d is determined as follows:

Random Forest: Breiman’s ensemble learning technique RF [7] classifies new data
instances (a deep feature of a brain MR image) into a class target (a type of brain
tumor) with two classes (normal and tumor) for two MRI datasets. It does this by
building multiple decision trees using the bagging approach. When building the decision
trees, RF randomly chooses n features or attributes to determine the best split point
using the Gini index as a cost function. This random selection of attributes results in
less correlation between the trees and lower ensemble error rates. To predict the class
target of a new data instance, the new observation is fed into all classification trees of
the RF. When RF collects the predictions for each class, it chooses the class with the
most votes as the new data instance’s class label.

3.3.2. Ensemble learning models

Ensemble methods are machine learning techniques that combine several base models to
produce one optimal predictive model. In other words, ensemble methods are techniques
that combine the predictions of multiple machine learning models (called base learners

Machine GRAPHICS & VISION 33(3/4):3-28, 2024. DOI: 10.22630/MGV.2024.33.3.1..


https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.3.1

18 Brain tumor classification using feature extraction. ..

or learners) to obtain a more robust and accurate prediction. Ensemble methods are
commonly used to improve the performance of machine learning models by reducing
overfitting and increasing generalization [42]. One of the most well-liked ensemble ma-
chine learning strategies is stacking, which is used to forecast several nodes to create a
new model and enhance model performance (in this research, it is the model that gave
us effective results among the models used). By stacking, we can train many models to
tackle related issues and then create a new model with higher performance based on the
output of all the trained models. The three main classes of ensemble learning methods
are bagging, stacking, and boosting.

Bagging (Bootstrap Aggregating): This method creates multiple data samples from the
training set using bootstrapping (sampling with replacement) and trains a base model
on each sample. The predictions from these models are then aggregated (usually using
a majority vote) to form a final prediction.

Boosting methods assign weights to training examples based on the performance of
previous models. The base models are trained iteratively, with an emphasis on mis-
classified examples. The predictions from each model are weighted to obtain a final
prediction.

Stacking combines several base models using a meta-learning model that learns from
the predictions of the base models. The meta-learning model takes the predictions
from the base models as input and generates the final prediction.

3.4. Discussion on data and methods

Smaller datasets, despite their limitations, can enhance model generalization when com-
bined with proper preprocessing, enhancement methods, and regularization. They en-
courage the model to focus on core features, reducing the risk of overfitting. Data
augmentation techniques artificially increase variability, further improving generaliza-
tion. Enhancement methods such as HOG and DWT can also compensate for the small
dataset size by effectively extracting critical features. With careful management, small
datasets can support a balanced and effective learning framework.

Several attempts have been made to classify brain tumors based on MRI using var-
ious machine and ensemble learning classifiers. In this research, we employed seven
well-known and diverse classifiers, including Naive Bayes, k-NN, RF, SVM, Gradient
Boosting, XGBoost, and Stacking, to determine which classifier works best for MRI-
based brain tumor classification. A crucial factor in effectively building the model for
MRI-based brain tumor classification is designing a method to generate a discriminative
and informative feature from brain MR images. This is because the performance of
machine and ensemble learning classifiers heavily depend on the input feature type, i.e.,
the features extracted from the image and the parameters used in the classifier.

Real-time performance is crucial in medical diagnosis, especially in emergencies re-
quiring fast and accurate decisions. In our study, we evaluated the model’s inference
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time and achieved classification results within 4 seconds, ensuring a balance between
speed and accuracy for practical applications.

4. Experiments and results

In this section, we present the experimental setup and results of our study on brain
tumor classification using feature extraction and ensemble learning techniques. Initially,
we provide an overview of our approach and the frameworks employed for implementing
the code. Following this, we detail the evaluation metrics used to assess the performance
of our classification models. Subsequently, we conduct a comprehensive comparison
between our approach and related works in the field. Finally, we delve into a discussion
of our findings and offer insights into future research directions.

4.1. Experimental setting

In this experiment, following the image pre-processing phase that included normalization,
resizing, augmentation, and cropping, we employed two descriptor functions HOG and
DWT as feature extractors to extract pertinent features speed up the models training,
avoid overfitting, and thereby augmenting the overall effectiveness and robustness of
the classification framework. Then, we concatenated these characteristics, evaluated,
selected and used them as inputs for the machine learning classifiers. This novel strategy
improved our classification prediction score. All trials were carried out on a computer
with an NVIDIA GeForce GTX 1070 Ti GPU.

4.2. Performance evaluation

Evaluating the performance of a machine learning model involves employing a range
of metrics and techniques to gauge its effectiveness, accuracy, and ability to generalize
to new data. These metrics help assess how well the model might perform on unseen
data and identify issues like overfitting or underfitting. Our experiment’s effectiveness
was determined using specific performance metrics tailored to the classification task,
including precision, recall, accuracy, and F1-score.

Precision: It represents the percentage of relevant results and is defined as:
TruePositive

P . . — 8
recision TruePositive + FalsePositive )

Recall: It denotes the percentage of correctly classified total relevant results by the
proposed algorithm and is defined as:

TruePositive
Recall = 9
eca TruePositive + FalseNegative )
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Tab. 3. Comparison between the performance of machine learning and ensemble learning algorithms
with the HOG descriptor as the only feature extraction algorithm.

Grou Model Performances measures [%]
p Accuracy Precision Recall F1-Score

Random Forest 82.3 82.3 82.3 82.3
Machine Support Vector Machine 88.1 86.4 93.0 89.6
Learning K-Nearest Neighbors 88.1 88.1 88.1 88.1
Gaussian Naive Bayes 61.5 63.4 61.5 60.7
E bl Gradient Boosting 84.2 84.2 84.2 84.2
Lo ® | XGBoost 83.4 83.4 83.4 83.4
& | Stacking 90.6 90.6 90.6 90.6

Accuracy: Formally, accuracy has the following definition:

TruePositive + TrueNegative
Total

Accuracy = (10)
F1-score: It is a machine learning measure commonly used in classification models and
is defined as:
Precision x Recall

F1- =2 x 11
seore Precision + Recall (11)

4.3. Results

The empirical results were derived from the 'Brain MRI Images for Brain Tumor Detec-
tion’ dataset, obtained from a Kaggle competition dedicated to brain tumor classification
tasks. The primary aim of this experiment was to extract features using two distinct
descriptors, namely HOG and Wavelet, with the intent to expedite machine learning
model training, prevent overfitting, and enhance the overall effectiveness and robust-
ness of the classification framework. These extracted features were concatenated into a
vector, evaluated, and selected using the RandomForestRegressor to identify the most
significant features, thereby reducing the dimensionality of our dataset, and enhancing
the interpretability and reliability of our model’s decisions, serving finally as inputs for
machine learning classifiers. Subsequently, the outputs of these classifiers were aggre-
gated to identify the most accurate predictions and improve the new model’s performance
through stacking, resulting in a high-performance classification. Tables 3 and 4 provide
the prediction scores achieved by each descriptor across various machine and ensemble
learning algorithms.

In summary, our empirical findings indicate that using a single descriptor for feature
extraction, combined with the machine learning algorithms in our methodology, results in
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Tab. 4. Comparison between the performance of machine learning and ensemble learning algorithms
with DWT as the only feature extraction algorithm.

Grou Model Performances measures [%]
p Accuracy Precision Recall F1-Score

Random Forest 80.4 80.4 80.4 80.4
Machine Support Vector Machine 86.3 84.6 93 87.5
Learning K-Nearest Neighbors 85.8 85.8 85.8 85.8
Gaussian Naive Bayes 60.2 61.7 59.8 59.1
E bl Gradient Boosting 82.3 82.3 82.3 82.3
Lo ® | XGBoost 81.7 81.7 81.7 81.7
& | Stacking 88.5 88.5 88.5 88.5

Tab. 5. Comparison between the performance of machine learning and ensemble learning algorithms
with the combination of features extracted from HOG and DWT.

Performances measures [%]

Group Model Accuracy Precision Recall F1-Score
Random Forest 82.6 82.6 82.6 82.6
Machine Support Vector Machine 89.7 88.7 93.2 89.7
Learning K-Nearest Neighbors 89.8 89.8 89.8 89.8
Gaussian Naive Bayes 62.3 63.8 61.5 61.4
Ensemble Gradient Boosting 85.3 85.3 85.3 85.3
Learnin XGBoost 85.6 85.6 85.6 85.6
& | Stacking 91.7 91.7 91.7 91.7

a notably larger classification score compared to similar studies using the same dataset
and methodology. To further enhance this classification score, we propose combining
both descriptors—HOG and wavelet—to extract additional features. This approach
allows us to provide our classifier with enriched inputs, reducing the risk of overfitting.
We then use these extracted features to train a RandomForestRegressor model, which
helps identify and select the most essential features, thereby reducing the dimensionality
of our dataset and enhancing the interpretability and reliability of our model’s decisions.
These selected features are subsequently used as inputs for our models. Table 5 shows
the prediction scores for each algorithm using this vector concatenation approach.
Based on a comprehensive analysis of our results, we confidently assert that our
approach has yielded robust outcomes, outperforming numerous state-of-the-art exper-
iments, as shown in Tab 6. This success can be attributed to the meticulous phases
of data preprocessing, extraction of image texture characteristics, and the synergistic
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Tab. 6. Performance comparison between our proposed method and different CNN approaches on the
same dataset.

Feature
Publication  Classification method extraction Accuracy
methods
[18] ResNet-50 CNN 95%
[35] VGG-16 Lu-Net 90%
[10] AlexNet CNN 96%
[19] FC Layer CNN 90%
Proposed Stacking HOG+Wavelet 92%

use of two descriptors—HOG and DWT—enhanced by a stacking algorithm that inte-
grates multiple base models. Throughout these phases, we emphasize the crucial role
of computer vision and infographic functions in enriching our dataset. Additionally, the
effectiveness of HOG and DWT techniques in extracting essential features, expediting
model training, and preventing overfitting has significantly boosted the overall efficacy
and resilience of our classification framework.

The concatenation, assessment, and selection of feature vectors to identify critical
features, reduce dataset dimensionality, and enhance the interpretability and reliability of
our model’s decisions have further contributed to the success of our approach. Moreover,
the incorporation of machine learning algorithms such as RF, SVM, and K-NN, along
with the stacking technique, has streamlined the integration of their predictions, thereby
improving classification accuracy. In summary, the fusion of these methods has resulted
in a novel approach distinguished by superior accuracy.

4.4. Discussion of results

Prior research on early brain tumor prediction has shown varying levels of accuracy, all
addressing the same fundamental challenge. The techniques used in each approach—from
dataset preprocessing to feature extraction and classification—are crucial factors that
highlight the value of our proposed method. In our study, we leverage common com-
puter vision and graphics functions, including normalization, resizing, augmentation,
and cropping, along with HOG and DWT feature extraction techniques, to ensure ro-
bust and informative input data for the classifier, expedite model training, and prevent
overfitting.

Additionally, we combine multiple machine learning algorithms to construct a re-
silient model, resulting in improved classification scores. The following table presents
the classification prediction precision of various methods applied to the same dataset,
which originally contained 253 images before preprocessing. The significance of our
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study lies in utilizing advanced imaging functions and descriptors to extract relevant in-
formation, reduce model training time, and prevent overfitting. These extracted features
serve as inputs for our ML classifiers, along with the integration capability of machine
learning algorithms such as SVM, K-NN, and RF, which consolidate their predictions
into a single model for efficient classification through stacking.

Our research introduces a novel approach to brain tumor classification, combining
the advantages of computer vision functions, feature extraction through descriptors, and
classification using machine learning models. Unlike prior studies that often overlook
preprocessing, we prioritize this stage by incorporating common computer vision and
graphics techniques. Additionally, we use HOG and DWT as image descriptors to ex-
tract relevant and significant features, ensuring high-quality input data for our model,
expediting training, and reducing overfitting—thereby creating a strong foundation for
further processing. This integration of preprocessing and feature extraction allows us to
capture crucial patterns and nuances essential for accurate disease classification.

Finally, we have employed a stacking model that combines the outputs of three
machine learning classifiers to improve classification accuracy. Our approach combines
advanced feature extraction techniques and accurate prediction models to surpass pre-
vious methods in brain tumor classification. Additionally, we evaluated the model’s
real-time performance, achieving classification results within a 4-second time frame and
a classification accuracy of 92%, demonstrating its efficiency and suitability for practical
applications.

5. Conclusion and perspective

In this paper, we have introduced an ensemble learning approach for brain tumor pre-
diction and classification. Our study focuses on two primary phases. Firstly, after pre-
processing the dataset using common computer vision and graphics functions including
normalization, resizing, augmentation, and cropping, we proceed to the feature extrac-
tion phase. Here, we utilize HOG and DWT descriptors to extract salient and relevant
features, thereby accelerating ML model training, preventing overfitting, and bolstering
the overall effectiveness and robustness of the classification framework. Subsequently,
we concatenate these extracted features into a single vector, evaluate, and select them
using a RandomForestRegressor, then utilize them as input in the Stacking model to
classify the results.

Our approach’s effectiveness lies in combining features extracted by the HOG and
DWT descriptors and integrating outputs from machine learning classifiers, resulting in
a more efficient classification model through stacking. This technique maximizes the
predictive power of individual classifiers, enhancing the overall accuracy and efficiency
of our classification framework.

The experimental outcomes highlight the remarkable capability of the HOG and
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DWT descriptors in extracting crucial features from MR images. Furthermore, the
effectiveness of amalgamating ML models is evident in achieving efficient classification
metrics. This study holds promise for advancing computer-assisted diagnosis in digital
pathology, indicating potential breakthroughs in medical imaging analysis.

Several studies in disease classification often fall short of meeting medical experts’
expectations due to issues such as poor performance, data dependency, or reliance on
computationally complex deep learning models. In our future endeavors, we aim to
investigate alternative large-scale datasets and devise methodologies to overcome these
limitations, striving to advance the field of medical image analysis and provide more
reliable tools for disease diagnosis and prognosis.
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Abstract Deep learning significantly supports key tasks in science, engineering, and precision agri-
culture. In this study, we propose a method for automatically determining maize developmental stages
on the BBCH scale (phases 10-19) using RGB and multispectral images, deep neural networks, and a
voting classifier. The method was evaluated using RGB images and multispectral data from the Mi-
caSense RedEdge MX-Dual camera, with training conducted on HTC_r50, HTC_r101, HTC_ x101,
and Mask2Former architectures. The models were trained on RGB images and separately on individual
spectral channels from the multispectral camera, and their effectiveness was evaluated based on clas-
sification performance. For multispectral images, a voting classifier was employed because the varying
perspectives of individual spectral channels made it impossible to align and merge them into a sin-
gle coherent image. Results indicate that HT'C_r50, HTC_r101, and HTC_ x101 trained on spectral
channels with a voting classifier outperformed their RGB-trained counterparts in precision, recall, and
F1-score, while Mask2Former demonstrated higher precision with a voting classifier but achieved better
accuracy, recall, and Fl-score when trained on RGB images. Mask2Former trained on RGB images
yielded the highest accuracy, whereas HTC_r50 trained on spectral channels with a voting classifier
achieved superior precision, recall, and Fl-score. This approach facilitates automated monitoring of
maize growth stages and supports result aggregation for precision agriculture applications. It offers a
scalable framework that can be adapted for other crops with appropriate labeled datasets, highlighting
the potential of deep learning for crop condition assessment in precision agriculture and beyond.

Keywords: Al deep learning, image recognition, RGB imaging, multispectral imaging, voting classifier,
precision farming, determining growth stages of maize, BBCH scale.

1. Introduction

Knowledge of the developmental phases of plants and their precise determination for
individual locations are crucial for calculating plant condition parameters within larger
areas of semi-cultivated fields, in line with the concept of precision agriculture [12,21,22].
A measure commonly used by scientists to quantify the developmental phase of a plant is
in is the international plant development scale BBCH [17,21]. The BBCH scale (Biologis-
che Bundesanstalt, Bundessortenamt und Chemische Industrie) is a standardized system
for identifying the phenological development stages of plants. It uses a two-digit coding
system where the first digit represents the principal growth stage (e.g., germination, leaf
development, flowering), and the second digit provides a more detailed subdivision of
each stage (e.g., the number of leaves developed) [17]. This scale allows for consistent
documentation and comparison of growth stages across different plant species and has
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been widely adopted by researchers, agronomists, and farmers for crop monitoring and
management [17,21].

The BBCH scale is widely utilized by agronomists, researchers, and farmers to mon-
itor and document the growth stages of crops. It aids in standardizing the timing for
agricultural practices such as fertilizing, and pesticide application, ensuring optimal crop
management and productivity [16,21,22]. Until now, the determination of developmen-
tal phases of specific plant species has only been done manually by visually analyzing
the plants [17]. Automating this process allows faster analysis, which will have a directly
impacts on timely human intervention and help provide plants with the right conditions
for development. These facts underline the need to develop a robust and rapid method
of assessing developmental phases, which can be carried out in an automated manner.

Artificial intelligence comes to the aid of this process [16,21,24]. The use of deep
learning techniques and the appropriate preparation of new training datasets make it
possible to develop trained models capable of detecting the indicated plants and deter-
mining their developmental phases based on image analysis [12]. The automatic detection
and classification of the BBCH phases of plant development using artificial intelligence
is still something of a novelty at present, but it is certainly the direction of the future
in precision agriculture [22]. The automation of this process with a defined accuracy
and speed, using deep learning algorithms, is therefore a very valuable and desirable
advancement compared to the current method of manually determining these parame-
ters. The development of this issue is heavily dependent on the creation of a dedicated
dataset [24]. We were the first to create datasets composed of images representing maize
plants growing in a real crop field. One dataset consists of RGB images, and the other
consists of images acquired in 10 spectral channels. In these datasets, we assigned each
plant a corresponding BBCH scale value (from stage 10 to stage 19). This enabled us to
develop a method to train Al algorithms to create a model capable of analyzing the im-
ages and automatically determining the developmental phases of the plants under study,
in this case maize, from the images. Without the use of a similar solution, assessing the
quality of plant development parameters on a large scale in a controlled environment is
unattainable, given the enormous time and effort required from participants. Our solu-
tion supports crop management from its initial stage and can support yield early enough
so that the amount of food produced can be easily and efficiently increased. Our method
is the start of research into accurately determining the early stages of plant development
(in this case maize) from close range and is far superior to existing manual methods in
terms of efficiency.

In this paper, we focus on the replication of results using the following deep learn-
ing architectures: HTC_r101, HTC_r50, HTC_x101, and Mask2Former [20, 30,32, 33].
These architectures demonstrate optimal performance in terms of the training process
and do not require excessive computational resources for training. We investigate their
efficiency and effectiveness when trained on a set of RGB and multispectral images.
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In addition, we conducted tests by dividing the multispectral dataset into individual
single spectral channels, which provided an answer as to which of the tested algorithms
performs best on the indicated datasets and which dataset to use for the detection
and classification of developmental phases to achieve the best results. We have also
introduced an additional method using a voting classifier, in which models trained on
individual spectral channels vote on the final result of selecting a class denoting a specific
developmental phase on the BBCH scale. This novel research expands our scope of data
analysis to other spectra beyond the previously popular RGB imaging. Our work opens
up a new avenue to explore new questions and inspires us to continue our research with
a new dataset combining spectral channels and to use another multispectral camera for
this purpose as well.

2. Related works

Assessing plant growth stages is crucial for determining their condition parameters [21].
In precision agriculture, an additional requirement is the automation of this process and
its accuracy, even at the level of individual plants or small areas within large fields [21].
This ensures proper control over plant development conditions and helps maintain high
food quality.

Automatic determination of plant growth stages and conditions has significantly ad-
vanced thanks to deep learning and image analysis [22]. Traditional methods rely on
manually inspecting plants to document their growth stages, while modern approaches
use automated representation learning from images to predict outcomes and assign
growth stage values to plants, typically using the BBCH scale [12].

Several studies have explored the use of deep learning models to determine plant
condition parameters, including the classification of maize growth stages. This addresses
the increasing demand for such solutions in agriculture, particularly in precision farming.
These solutions are being developed to meet the need for effective crop management and
the monitoring of condition parameters.

For example, Xu et al. [30] proposed a deep learning approach for determining maize
growth stages by counting leaves. They developed a two-step method combining instance
segmentation and object detection, employing Mask R-CNN and YOLOv5 architectures.
This method effectively detected and counted leaves, overcoming challenges related to
background and weeds. Using RGB images captured by UAVs, their approach represents
a significant advancement in precision agriculture.

Liu et al. [20] developed a system to measure maize seedling emergence by evaluating
count, size, uniformity, and distribution. Using deep learning with UAV-captured RGB
images, they overcame challenges like shadows and planting density. The system, based
on the YOLO architecture and TOPSIS method, accurately assessed seedling quality
and identified areas with poor emergence in experimental fields.
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Yu et al. [32] used deep convolutional neural networks (DCNNs) to estimate maize
aboveground biomass (AGB) from multisource UAV imagery. They showed that AGB
estimation, essential for crop growth assessment, can be effectively modeled using re-
gression between AGB and agronomic traits from UAV data. DCNNs provided superior
results, especially during the vegetative phase.

Zhang et al. [33] developed a method for detecting maize tassels in UAV-captured
RGB images. They highlighted that tassel developmental stage and branch number are
key phenotypic traits for assessing growth, pollen quantity, and planning tassel pruning
in seed fields. Using a Random Forest classifier and the VGG16 network, their algorithm
effectively detected tassels in complex field conditions, improving crop management and
yield quality assessment.

Yao et al. [31] proposed a method for classifying maize growth stages using phenotypic
traits and UAV-captured data. They combined vegetation indices (VI), textural features
(TF), and phenotypic parameters like leaf chlorophyll content (LCC), leaf area index
(LAI), fractional vegetation cover (FVC), and canopy height (CH). The highest accuracy
(95.1%) was achieved with a Random Forest classifier using LCC, LAI, FVC, and CH.
The study showed phenotypic features outperform vegetation indices, and integrating
UAV data with machine learning enables accurate maize growth stage monitoring.

Bera et al. [3] proposed PND-Net, a system combining graph convolutional net-
works (GCN) with traditional CNNs to classify plant nutrient deficiencies and diseases.
The model integrates local leaf image features (Xception, ResNet-50, Inception-V3,
MobileNet-V2) with spatial relationships captured by GCN, using spatial pyramid pool-
ing (SPP) for multi-scale feature aggregation. Tests on datasets (banana, coffee, potato,
PlantDoc) showed high performance: 90.00%, 90.54%, 96.18%, and 84.30%, respectively.
PND-Net also achieved state-of-the-art results in medical image classification (BreakHis,
SIPaKMeD), making it valuable for precision agriculture and medicine.

Bera et al. [4] proposed RAFA-Net, a method combining CNNs with a regional atten-
tion mechanism for food classification and plant stress recognition. The model captures
contextual information and long-range dependencies using spatial pyramid pooling (SPP)
and average pooling. Tested on food datasets (UECFood-100, UECFood-256, MAFood-
121) and plant stress datasets (IP-102, PlantDoc-27), RAFA-Net achieved top accuracies
of 91.69%, 91.56%, 96.97%, 92.36%, and 85.54%. The results highlight RAFA-Net’s ef-
fectiveness in precision agriculture and food processing.

Wu et al. [28] proposed an innovative approach for identifying strawberry diseases
using a deep learning model based on the Squeeze-and-Excitation (SE) mechanism. The
system integrates sensor data acquisition and plant imaging, transmitting images to the
cloud via a dedicated gateway for analysis. This solution enables efficient monitoring of
strawberry health, improving crop management and yields.

Bompani et al. [5] explore the implementation of computer vision algorithms on a
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heterogeneous multicore microcontroller to accelerate pest detection, specifically target-
ing the codling moth in apple orchards. Sensor nodes with cameras capture and process
images locally, thereby reducing transmission delays. This approach improves real-time
pest monitoring, which is crucial for protecting crops and minimizing losses.

Bansal et al. [1] proposed PA-RDFKNet, a deep learning model integrating RGB
and hyperspectral imaging for plant age estimation. By combining features from both
modalities, PA-RDFKNet significantly improves accuracy over single-modality methods.
This approach supports precision agriculture by enhancing plant growth monitoring and
optimizing agronomic practices.

Bera et al. [2] introduced APDC (Attention-based Plant Disease Classification), a
method using CNNs with an attention mechanism to identify plant diseases from leaf
images. The model extracts features, highlights key regions, and classifies them with a
softmax layer. Tested on PlantPathology, PaddyCrop, PaddyDoctor, and PlantVillage
datasets, APDC achieved accuracies of 97.74%, 99.16%, 99.62%, and 99.97%. This end-
to-end trainable model, using lightweight CNNs like MobileNet-v2 and DenseNet-169, is
efficient for precision agriculture.

Based on the reviewed articles, most researchers successfully use deep learning models
to determine growth stages and other plant condition parameters. They primarily em-
ploy RGB imaging techniques captured by UAVs for this purpose. As we have observed,
some of the most powerful deep learning models, such as HT'C and Mask2Former, have
not yet been explored for this specific task. The literature review also revealed that RGB
imaging is typically used for determining plant growth stages, including maize, rather
than multispectral imaging. This has led to gaps in knowledge regarding whether HTC
and Mask2Former can be effectively applied and implemented for maize growth stage
classification. Another research gap is the limited use of multispectral imaging for de-
termining plant growth stages, particularly for maize. This article aims to address these
research gaps. We intend to investigate which type of imaging (RGB or multispectral) is
more suitable for this task and which of the examined algorithms proves to be the most
effective. The goal of the research is to select the most effective configuration in the
form of: imaging type plus the chosen algorithm from the following options: HTC_ r50,
HTC_rl101, HTC_x101, and Mask2Former.

3. Data and methods

3.1. Datasets

In order to carry out the research, the results of which we present in this article, we used
specially prepared datasets of tagged images of maize at different stages of development,
divided into RGB and multispectral sets. Data were collected from the same test plots,
during the 2021-2022 growing seasons. We collected the data using an RGB camera
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Tab. 1. Parameters of RGB and Multispectral Datasets

Dataset Type Camera Image Count | Resolution | Total Labeled | Objects per Class
Objects (BBCH 10-19)
RGB RGB Camera 396 12 MP 884 83, 83, 137, 83, 83
83, 83, 83, 83, 83
Multispectral Micasense 556 per channel 5 MP 9070 82, 86, 162, 82, 82

RedEdge-MX DUAL
(10 spectral channels)

(907 per channel) | 83, 84, 83, 83, 80

(per channel)

and a MicaSense RedEdge-MX DUAL multispectral camera, which captures 10 spectral
channels covering the 400 to 900 nm range.

The RGB camera used automatic white balance and exposure settings, eliminating
the need for additional manual calibration. For the multispectral camera, we used stan-
dard calibration procedures involving reference panels with known reflectance values.
This ensured consistency and accuracy of the spectral data captured across different
channels.

The datasets include images captured under varying weather conditions, different
levels of sunlight, and at various times of the day to maximize diversity. The images
were labeled according to the international BBCH plant development scale, adapted for
maize, as shown in Figure 1. This scale reflects the number of leaves developed by a
plant, with values ranging from 10 to 19, where the tens digit represents the leaf stage,
and the ones digit indicates the number of leaves.

Table 1 summarizes the detailed parameters of both datasets, including image count,
resolution, total labeled objects, and distribution of objects across BBCH phases.

After labeling the images using the Label Studio environment with the polygon
method, the datasets were divided into training and validation sets. The training sets
comprised 70% of the data, while the validation sets comprised 30%, with stratification
ensuring an even distribution of BBCH phases across the sets.

Examples from each dataset are shown in Figure 2, which displays RGB images of
maize at different stages of development, captured under various weather conditions and
at different times of the day. Figure 3 presents images taken by the individual lenses
of the MicaSense RedEdge-MX DUAL multispectral camera, alongside a comparative
image captured by the RGB camera.

3.2. Methods

In this section, we provide a detailed description of the methods used in our study.
Figure 4 illustrates the general scheme of the proposed maize growth stage classification
system.

Our system employs three primary classification approaches: classification on RGB
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Fig. 1. Examples of determining BBCH scale values for maize and labelling them on images using ’the
polygon method’, (a) maize at stage 14 of the BBCH scale, (b) maize at stage 18 of the BBCH
scale, (c) maize at stage 19 of the BBCH scale.

(e)

Fig. 2. Examples of RGB images showing maize at various stages of development, captured under
different weather conditions and times of day.

images, classification on individual spectral channels, and classification using a voting
classifier. Each approach uses deep learning models, including HTC_ x101, HTC_ r101,
HTC_r50, and Mask2Former, trained on corresponding datasets consisting of RGB or
individual spectral channels. The best-performing algorithm was selected based on the
highest accuracy achieved during the training process.

The first approach involves the classification of RGB images using the best algorithm
identified through model evaluation. In the second approach, classification is performed
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Coastal blue 444(28)| NIR 842(57)

blue 475(32) red 650(16)

red edge 740(18)

Fig. 3. Examples of images captured from individual spectral channels and an RGB camera, demon-
strating various bands and perspectives.

using 10 different models, each trained on a separate spectral channel, with the best-
performing algorithm applied to each channel. The third approach utilizes a voting
classifier, which combines the results from the 10 models trained on individual spectral
channels. The final maize growth stage is determined based on the consensus of these
models. A more detailed explanation of each method is provided in the subsequent
sections of the article.

3.2.1. Models architectures

During our research, we used the following deep artificial neural network architectures
for image analysis: HTC_x101, HTC_r101, HTC_r50, Mask2Former [8,10,15,29]. The
highlights of these architectures we describe below.

HTC_x101, HTC_r101 and HTC_ r50

HTC, or Hybrid Task Cascade, is an advanced model architecture used for simultaneous
object detection and instance segmentation tasks. Proposed by SenseTime Research,
HTC is renowned for its high accuracy in benchmarks like COCO [7]. The HTC ar-
chitecture includes configurations like HTC_x101, HTC_r101, and HTC_r50, varying
by the backbone used. HTC_x101 employs the ResNeXt-101 backbone, featuring 101
layers and grouped convolutions to enhance efficiency and accuracy [29]. HTC_r101 uti-
lizes the ResNet-101 backbone, which includes a residual mechanism to improve gradient
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Fig. 4. Scheme of the proposed maize development stage classification system.

propagation and training [15]. HTC_r50, on the other hand, uses the ResNet-50 back-
bone, incorporating 50 layers with a residual mechanism that strikes a balance between
performance and computational efficiency [18]. All three configurations use the Feature
Pyramid Network (FPN) as the ‘neck’, which generates feature maps at different scales
and enables efficient detection of objects across various sizes [18].

Regarding the ‘heads’, each model features similar components. The RPN (Region
Proposal Network) head generates Region of Interest (ROI) proposals for further pro-
cessing [23]. The ROI head conducts multi-stage bounding box regression and object
classification to enhance detection accuracy [13]. The Mask head is responsible for
instance segmentation, accurately delineating object contours within an image [14]. Fi-
nally, the Semantic head incorporates contextual information to improve performance in
semantic segmentation tasks [35].
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The HTC_x101, HTC_r101, and HTC_r50 models are trained using Stochastic
Gradient Descent (SGD) optimization, with key hyperparameters including learning
rate, momentum, and weight decay [6]. They incorporate advanced techniques such
as RolAlign (Region of Interest Align), which enhances the accuracy of object detec-
tion and segmentation. The use of multi-stage bounding box regression and semantic
segmentation contributes to their high performance in benchmarks like COCO [14].

HTC’s various configurations offer the flexibility to choose the right architecture
depending on computational and precision requirements, making them versatile tools
for advanced computer vision applications.

Mask2Former

Mask2Former is an advanced model architecture designed for various image segmentation
tasks, including instance, semantic, and panoptic segmentation. It incorporates several
innovations that enhance its performance over previous models.

The architecture employs a transformer-based backbone, utilizing a self-attention
mechanism to efficiently process visual data and capture global dependencies within im-
ages, which is crucial for accurate segmentation [27]. Unlike traditional methods that
generate masks for predefined regions, Mask2Former features dynamic mask prediction.
This approach generates masks based on the context of each image, significantly increas-
ing the model’s flexibility and precision in mask generation [37].

Additionally, Mask2Former integrates instance, semantic, and panoptic segmentation
tasks into a unified framework, allowing it to perform multiple types of segmentation
without requiring structural modifications. The model also utilizes a query-based learn-
ing mechanism, where queries are dynamically updated during training to adapt to
various scenarios, enhancing the quality of the generated masks [37].

Furthermore, Mask2Former employs advanced loss functions, such as focal loss, to
effectively address issues with class imbalance in the training data, thereby improving
overall performance and training efficiency [19].

Mask2Former is trained with finely tuned hyperparameters such as learning rate,
weight decay, and the use of regularization techniques such as dropout and data aug-
mentation [25]. The model also uses self-attention and query mechanisms for dynamic
mask learning, which enhances its ability to accurately segment [37].

The architecture achieves high performance in benchmarks such as COCO, ADE20K,
and Cityscapes, demonstrating superiority over previous segmentation methods [11,36].
Its versatility and innovative approach to mask prediction make it a powerful tool in
the field of image segmentation, for both research and practical applications [9, 37].
Mask2Former represents a significant step forward in segmentation model architectures,
combining advanced visual data processing techniques with an efficient approach to
dynamic mask prediction [34,37].
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Tab. 2. Hyperparameters and Configuration for HTC_ r50, HTC_r101, HTC_x101, and Mask2Former

Models

Model | Backbone | LR | Momentum | Weight Decay | Batch Size | Loss Functions

HTC_r50 ResNet-50 0.0003 0.9 0.0001 1 CrossEntropyLoss,
SmoothL1Loss

HTC_ri101 ResNet-101 0.0003 0.9 0.0001 1 CrossEntropyLoss,
SmoothL1Loss

HTC_x101 ResNeXt-101 | 0.0003 0.9 0.0001 1 CrossEntropyLoss,
SmoothL1Loss

Mask2Former | ResNet-50 0.0003 0.9 0.0001 1 CrossEntropyLoss,
DiceLoss

3.2.2. Implementation, training and evaluation procedures

In our research, we used the PyTorch library to implement various models. We de-
fined model architectures, specifying backbones, the Feature Pyramid Network (FPN)
as the neck, and heads such as RPN, ROI, Mask, and Semantic Heads. The detailed
configuration, including hyperparameters, backbones, and loss functions, is presented in
Table 2.

To initialize these models, we employed weights pre-trained on the ImageNet dataset,
leveraging knowledge embedded in large-scale datasets to enhance performance on our
smaller labeled datasets.

To further improve robustness and generalization, we applied data augmentation
techniques during training. These included resizing images to 1333x1000 pixels while
maintaining their aspect ratio, random horizontal flipping with a probability of 50%,
normalization using mean and standard deviation values for RGB channels, and padding
to ensure image dimensions were divisible by 32. For segmentation tasks, masks were
downscaled by a factor of 0.125. During testing, multi-scale augmentation was applied
with resizing to 1333x1000 pixels, and flipping was disabled to maintain consistency in
evaluation.

Models were trained using Stochastic Gradient Descent (SGD) to minimize the loss
function. We used CrossEntropyLoss and SmoothLL1Loss for most models, while for
Mask2Former, we employed CrossEntropyLoss and DiceLoss.

Model performance was evaluated using the following measures: mAP (Mean Average
Precision), accuracy, precision, sensitivity (recall), and IoU (Intersection over Union).

3.2.3. Description of the algorithm voting process

For the multispectral images, we noted that objects appeared at varying distances from
the image edges due to different lens angles. This issue was particularly pronounced for
maize at higher developmental stages (BBCH 14-19), where variations in angles altered
object shapes, making it difficult to create composite images from different spectral
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channels. While one lens might capture a leaf as relatively straight, another could
record it as curved. These discrepancies complicated the superimposition of images
from different spectral channels into a single composite image.

eimage_1: class 1 — [polygon_1: area, polygon_2: areal, class 2 — [polygon_1:
area]

eimage_ 2: class_3 — [polygon_1: area

The final results obtained take the following form:
eimage 1: class_6
eimage 2: class 5

To address this issue and fully utilize all spectral channels of the RedEdge-MX cam-
era, we employed a voting classifier composed of 10 individual models. Each model
was trained on images from a specific spectral channel using the HTC algorithm with a
ResNeXt101 backbone, as this configuration consistently provided the best performance.
After training, the predictions from these models were aggregated by plant identifier
(file_id). For each plant, the final class was determined by majority voting. In cases
where there was a tie, the class with the highest average polygon score was selected.
The aggregated predictions yield results in the following format:

eimage 1: class_1 — [polygon_ 1: score, polygon_ 2: score], class 2 — [polygon_ 1:
score]

eimage 2: class 3 — [polygon_ 1: score]

The voting classifier aggregates these results and assigns the class with the highest score
to an image. The final results are presented as:

eimage 1: class_6
eimage 2: class 5

During validation, the markings are aggregated into classes using defined polygons
for each spectral channel. An image may contain multiple polygons for various classes.
To determine a single class per image, we selected the polygon with the largest area.
The initial data structure for each spectral channel is as follows:

The voting classifier predicts the class for each plant based on images taken from dif-
ferent angles by separate cameras. By aggregating predictions from all spectral channels,
we can achieve more robust and accurate classifications, even when individual models
produce inconsistent results due to variations in object appearance.

Figure 5 illustrates the workflow of the voting classifier, from training individual
models on spectral channels to aggregating predictions and selecting the final class.
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Fig. 5. Workflow of the voting classifier: training models on spectral channels, making predictions, and
aggregating results through majority voting.

4. Experimental results

In this chapter, we present the experimental results for BBCH scale classification of
developmental stages. We compare results obtained from RGB data, multispectral data,
and the voting method developed using multispectral data.

4.1. Algorithms results on multispectral data

During the experimental study, we noticed differences in classification performance be-
tween the different algorithms used for the training process of deep neural networks and
between the different spectral channels on which the algorithms were trained.

In Table 3 we present the classification results for the spectral channels recorded
for each of the algorithms tested. The model trained on the data from channel 10
clearly differs in classification efficiency from the models trained on the other spectral
channels. The table presented illustrates the effectiveness of each classification method
on multispectral data.

From the analysis, we conclude that for the HT'C algorithm with ResNet101, spectral
channel 07 (red edge 705 (10)) yielded the best results (in the notation of channels
in the optical specifications of cameras and multispectral sensors, in the description,
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Tab. 3. Classification results for each of the spectral channels analysed using individual deep learning

algorithms.
channel accuracy precision
HTC_r101 HTC_r50 HTC x101 Mask2Former HTC_ r101 HTC_r50 HTC_x101 Mask2Former
01 0.486957 0.552174 0.547826 0.539130 0.486508 0.592528 0.582530 0.550819
02 0.568282 0.559471 0.559471 0.555066 0.594116 0.563848 0.586652 0.611719
03 0.548246 0.550661 0.530702 0.508772 0.587350 0.573304 0.570517 0.567900
04 0.567100 0.549784 0.541126 0.510823 0.603094 0.587433 0.563036 0.502541
05 0.575893 0.580357 0.558036 0.531250 0.596516 0.605068 0.578664 0.545954
06 0.547085 0.551570 0.581081 0.520179 0.570063 0.577274 0.591761 0.545100
07 0.582609 0.565217 0.569565 0.495652 0.606866 0.581716 0.593181 0.566532
08 0.538117 0.522321 0.540179 0.486607 0.575040 0.556559 0.572584 0.504101
09 0.551570 0.569507 0.549550 0.524664 0.586433 0.584708 0.561682 0.540334
10 0.219298 0.223684 0.214912 0.232456 0.161993 0.175143 0.162701 0.174677
channel recall Fl-score
HTC_rl101 HTC_r50 HTC_x101 Mask2Former HTC_rl101 HTC_r50 HTC_x101 Mask2Former

01 0.546268 0.608676 0.582942 0.547557 0.482994 0.558260 0.543616 0.506817
02 0.611719 0.619491 0.589024 0.599922 0.563584 0.554428 0.564948 0.543282
03 0.593651 0.591402 0.566799 0.549762 0.552418 0.557723 0.521853 0.509900
04 0.626295 0.600151 0.566362 0.557919 0.566393 0.555305 0.539768 0.494669
05 0.621161 0.630494 0.587758 0.571906 0.585859 0.589184 0.552485 0.523784
06 0.571536 0.585762 0.610729 0.558193 0.546741 0.556209 0.591596 0.521969
07 0.627316 0.587195 0.602076 0.541441 0.587952 0.560104 0.570215 0.474963
08 0.561341 0.553343 0.555533 0.542855 0.529349 0.552871 0.476158
09 0.611539 0.596285 0.565288 0.541253 0.557820 0.570818 0.544688 0.527224
10 0.215904 0 80 0.217906 0.257787 0.175971 0.187777 0.176843 0

Tab. 4. Best classification results for each spectral channel.

Spectral channel | Wavelength [nm] | Best algorithm | Metrics

01 (coastal blue) 444 (28) HTC (ResNet50) accuracy, precision, recall, F1-score
02 (blue) 475 (32) HTC (ResNet101) accuracy, recall
Mask2Former precision
HTC (ResNeXt101) F1-score
03 (green) 531 (14) HTC (ResNet50) accuracy, F1l-score
HTC (ResNet101) precision, recall
04 (green) 560 (27) HTC (ResNet101) accuracy, precision, recall, F1-score
05 (red) 650 (16) HTC (ResNet50) accuracy, precision, recall, F1-score
06 (red) 668 (14) HTC (ResNeXt101) | accuracy, precision, recall, F1-score
07 (red edge) 705 (10) HTC (ResNet101) accuracy, precision, recall, F1l-score
08 (red edge) 717 (12) HTC (ResNet101) precision, recall
HTC (ResNeXt101) accuracy, Fl-score
09 (red edge) 740 (18) HTC (ResNet50) accuracy, F1l-score
HTC (ResNet101) precision, recall
10 (NIR) 842 (57) Mask2Former accuracy, recall
HTC (ResNet50) precision, Fl-score

e.g. 444 (28), the first value (444 nm) refers to the central wavelength, and the value in
parentheses (28 nm) represents the bandwidth; so, in this example, the spectral range
is 430 £ (28/2) nm). With ResNet50, channel 05 (red 650 (16)) performed best, and
with ResNeXt101, channel 06 (red 668 (14)) was optimal. For Mask2Former, channel
02 (blue 475 (32)) provided the best results. Different algorithms thus achieve optimal
performance with different spectral channels. Table 4 summarizes the best-performing
algorithm for each spectral channel.

The classification results for spectral channel 10 (NIR 842 (57)) show a significant
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Tab. 5. Comparison of the classification results across different algorithms on RGB images with those
obtained using multispectral images and voting classifier approach. The analysis uses accuracy,
precision, recall, and F1-score measures.

Model Approach ‘ accuracy  precision recall F1-score
HTC_rl101 voting classifier | 0.651466 0.684678  0.686132  0.643477
RGB 0.706667  0.460286  0.496550  0.465737
HTC_r50 voting classifier | 0.661238  0.690290  0.699036  0.659793
RGB 0.680000  0.424074  0.404996  0.406152
HTC_x101 voting classifier | 0.657980 0.663664 0.676181  0.652508
RGB 0.760000  0.525599  0.580694  0.524339
Mask2Former  voting classifier | 0.625407  0.615539  0.630647  0.592380
RGB 0.800000 0.596212  0.660516  0.600132

deviation in accuracy compared to other channels. This indicates that classification
using only this spectral channel has the lowest object classification efficiency among the
analyzed bands.

4.2. Algorithms results on RGB data

In addition to the multispectral studies, we conducted experiments with RGB images.
We observed variations in classification performance among different algorithms when
trained on RGB images.

The Mask2Former algorithm achieved the best RGB image classification results in
terms of accuracy, precision, recall, and F1-score, making it the most effective model for
RGB among those studied. However, the HT'C algorithm with a ResNeXt101 backbone
ranked second, followed by HTC with a ResNet101 backbone in third place and HTC
with a ResNet50 backbone in fourth place.

4.3. Results obtained in the voting process

Table 5 summarizes the classification accuracy results for all tested algorithms, com-
paring RGB models with those using our voting method based on individual spectral
channels. The evaluation measures used are accuracy, precision, recall, and F1-score.

The results show that the HTC algorithm with a ResNet101 backbone, trained on
RGB data, achieves a higher accuracy measure than the voting classifier based on all
spectral channels. However, for the precision, recall, and F1-score measures, the voting
classifier achieves better results.

For the HTC algorithm with a ResNet50 backbone, the model trained on RGB data
outperforms our voting method based on single spectral channel models in terms of
accuracy. However, the voting method performs better in precision, recall and F1-score
measures.
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Comparison of F1-score values for different models and different classification methods
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Fig. 6. Visualisation comparing the classification results between algorithms trained on RGB images
and those using multispectral images with a voting classifier approach.

The HTC algorithm with a ResNeXt101 backbone, trained on RGB data, achieves
a higher accuracy measure than the voting classifier based on all spectral channels.
However, for the precision, recall, and F1-score measures, the voting classifier achieves
better results.

For the Mask2Former algorithm, the model trained on RGB data outperforms our
voting method based on single spectral channel models in terms of accuracy, recall, and
F1-score. However, the voting method performs better in the precision measure.

In turn, in Figure 6, we present a graphical summary of the comparative data for the
model trained on RGB images and the method using a voting classifier. We used the
F1-score measure for comparison.

For HTC with ResNet101, ResNet50 and ResNeXt101, the voting classifier outper-
forms the RGB-trained model. In contrast, for the Mask2Former algorithm, the RGB-
trained model outperforms the voting classifier.

Key conclusions include that the voting classifier based on single spectral channels
performed better than the RGB classifier. Single-channel models generally show lower
quality compared to the RGB classifier trained on three-channel images; however, the
potential of voting techniques to enhance predictions improved the overall performance.

4.4. Learning curves

In this chapter, we present the learning curves recorded during the training of each model

(the complete set of curves is available in the repository [26]). Below are the curves for

each algorithm, illustrating training performance across different spectral channels.
Figure 7 compares the performance of the HT'C_r101 model trained on individual
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Fig. 7. Comparison of the training curves of the HT'C_r101 model trained on individual spectral chan-
nels.

htc_x101 Spectral Canals Comparison

04
canal
— 01
02
03

e
w

bbox_mAP_50

05

o
1Y)

o7
08

0.1

NEAREREE
g8

10

Epoch

Fig. 8. Comparison of the training curves of the HTC_x101 model trained on individual spectral chan-
nels.

spectral channels over 100 epochs. The horizontal axis shows epochs, and the vertical
axis displays object detection performance expressed by the measure bbox_ mAP_ 50.
This measure denotes the Bounding Box Mean Average Precision at IoU 50%. It con-
siders detections as correct if the Intersection over Union (IoU) between the predicted
and ground truth bounding boxes is at least 50%. Channel 10 exhibits the lowest per-
formance, with bbox_mAP_ 50 values around 0.1 after 20 epochs. In contrast, other
channels show better results, with bbox mAP_ 50 values around 0.4 and minor fluctu-
ations. Channel 7 achieves the highest efficiency, with a maximum bbox_mAP_ 50 of
about 0.47, maintaining the best performance among all individual spectral channels.

Figure 8 presents the learning curves for the HT'C__x101 model across spectral chan-
nels. Channel 10 shows the lowest performance, with bbox_ mAP_ 50 around 0.4 initially,
dropping to 0.35 between 40-60 epochs, and stabilizing above 0.3 afterward. Channels
05 and 07 perform best, with very similar results.
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Fig. 9. Comparison of the training curves of the HT'C_ r50 model trained on individual spectral channels.
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Fig. 10. Comparison of the training curves of the Mask2Former model trained on individual spectral
channels.

For the HTC r50 algorithm (Figure 9), the learning curves are similar to those of
HTC r101. Channel 10 shows the lowest performance, with bbox mAP_50 values
around 0.4 after 10 epochs, remaining stable with slight fluctuations up to 100 epochs.
The values for channels 01-09 are more stable after reaching a maximum, indicating their
better performance in detecting objects with the HTC_ r50 model.

For the Mask2Former algorithm (Figure 10), the lowest results can also be observed
for channel 10, where bbox_ mAP_ 50 oscillates around 0.125 after the first 20 epochs
and remains at this level until the end of the observation, i.e. the end of 100 epochs.
The remaining channels reach higher bbox__mAP_ 50 values, but are no longer such a
compact group as in the previous algorithms. Of all the channels, the highest bbox_ mAP
values are reached by channel 02.

The results show that different algorithms reach peak bbox_mAP_ 50 values for vari-
ous spectral channels, with most channels stabilizing after 20 epochs (except HTC_x10,
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Fig. 11. Comparison of the training curves of different models on the dataset from the first spectral

channel.
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Fig. 12. Comparison of the training curves of different models on the dataset from the second spectral
channel.

stabilizing after 60 epochs). Channel no. 10 consistently yields the poorest learning
results.

We now examine models trained on individual spectral channels. Figures 11 and 12
compare the performance of four models on datasets from two spectral channels over 100
epochs. Additional graphs for other channels are available in the repository [26]. The
horizontal axis represents epochs, and the vertical axis shows bbox_mAP_ 50, indicating
detection accuracy.

Figure 11 shows results for spectral channel 01. The Mask2Former model achieves the
highest and most stable bbox_mAP_ 50 of around 0.4 after 20 epochs. HT'C_r101 and
HTC_ r50 models also stabilize around 0.4 but perform slightly worse. HTC__x101 starts
strong but declines after 20 epochs, stabilizing around 0.3, indicating lower performance.

Analyzing spectral channel 02 (Figure 12), HTC_r101 and HTC_ r50 rapidly increase
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bbox_ mAP 50 to around 0.4 and stabilize. Mask2Former also rises to about 0.4 within
20 epochs. HTC_ x101 initially increases to 0.4 but then drops to around 0.3. HTC_ r101
achieves the highest performance, while HTC_x101 shows the lowest one.

For spectral channel 03 (see the repository [26]), HTC_r101 and HTC_ r50 rapidly in-
crease in bbox__mAP_ 50 during the first 10 epochs, stabilizing around 0.4. Mask2Former
rises swiftly in the first 20 epochs, then stabilizes at about 0.3. HTC_x101 initially in-
creases to 0.4, but then declines and stabilizes around 0.3. The highest performance is
achieved by the HTC_ r50 model, while the Mask2Former model performs the worst.

For spectral channel 04 (see the repository [26]), HTC_r101 and HTC_r50 rapidly
increase bbox_ mAP_ 50 to around 0.4 and stabilize. Mask2Former rises to 0.3 within
20 epochs. HTC_ x101 also reaches 0.4 initially but declines to around 0.3. HTC_ r50
shows the highest performance, while Mask2Former performs the worst.

By analysing the results for spectral channel 05 (see the repository [26]) it can be
discovered that HTC_r101 and HTC_r50 rapidly increase bbox mAP_ 50 to around
0.4 and stabilize. Mask2Former also stabilizes at about 0.4 after 20 epochs. HTC _x101
rises to 0.4 initially but declines to around 0.3. HTC_r101 achieves the highest results,
followed by HTC__r50, while HTC_ x101 shows the lowest performance.

For spectral channel 06 (see the repository [26]), the HTC_r101 and HTC_r50 algo-
rithms quickly increase bbox_ mAP_ 50 to around 0.4 and then stabilize. Mask2Former
rises swiftly in the first 20 epochs and stabilizes at about 0.3. HTC_ x101 reaches 0.38
initially but declines to around 0.3. HTC_r101 achieves the highest results, followed by
HTC_r50, with HTC_ x101 performing the worst.

For spectral channel 07 (see the repository [26]), the HTC_r101 and HTC_r50 al-
gorithms quickly increase bbox mAP_ 50 to 0.45 and 0.4, respectively, and stabilize.
Mask2Former rises rapidly in the first 20 epochs and stabilizes at around 0.4. HTC_ x101
reaches 0.45 initially but declines to 0.3. HTC_r101 performs the best, followed by
HTC_r50, with HTC_ x101 showing the lowest results.

For spectral channel 08 (see the repository [26]), the HTC_r101 and HTC_ r50 algo-
rithms quickly increase bbox__mAP_ 50 to around 0.4 and stabilize. Mask2Former also
rises rapidly and stabilizes at about 0.4. HTC_x101 reaches 0.4 initially but declines to
0.3. HTC_r50 performs the best, while HTC_ x101 shows the lowest results.

For spectral channel 09 (see the repository [26]), the HT'C_r101 and HTC_r50 al-
gorithms show a rapid rise in bbox_mAP_50 to around 0.4, stabilizing at this level.
Mask2Former also reaches about 0.4 after 20 epochs. The HTC_ x101 model initially
increases to 0.4 but declines to 0.3. HTC_ r50 achieves the highest performance, followed
by HTC_r101 and Mask2Former, with HTC_x101 showing the lowest results.

For spectral channel 10 (see the repository [26]), the HTC_r101 and HTC_ r50 algo-
rithms quickly rise in bbox_ mAP_ 50 to about 0.15, stabilizing there. The Mask2Former
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also increases to around 0.125. The HTC_x101 model initially reaches 0.4 but de-
clines to 0.125. HTC_ r101 achieves the highest performance, followed by HTC_ r50 and
Mask2Former, with HTC_ x101 showing the lowest results.

5. Conclusions

We have presented an innovative approach for automating maize growth monitoring
using image analysis and artificial intelligence techniques. Our method employs deep
neural networks to analyze RGB and multispectral images, along with an additional
voting classifier. The goal was to efficiently detect and classify maize developmental
stages based on the BBCH scale, enabling automatic monitoring of plant development
phases and presenting the results on large scale, e.g., in the form of a map.

Our results demonstrate a highly automated method for detecting and classifying
maize developmental stages with plant-level accuracy. Compared to manual methods,
our solution significantly accelerates the classification process through real-time image
analysis on a field robot, allowing for efficient maize growth stage monitoring. While
UAV-based approaches cover larger field areas per image, our method offers greater
precision at the individual plant level. By integrating advanced image analysis and deep
learning algorithms, our solution achieves high automation and accuracy. A literature
review confirms the novelty of our method.

The models in our study were trained on proprietary datasets of labeled maize images
at various BBCH developmental stages (10-19), captured in both RGB and multispectral
spectra. This allowed comprehensive training separately on RGB and each spectral chan-
nel. Furthermore, we evaluated various deep learning architectures to assess detection
and classification performance across different training datasets and algorithms.

To improve the performance of the model we employed pre-trained backbones such
as ResNeXt-101, ResNet-101, and ResNet-50, initialized with ImageNet weights. Fine-
tuning these models on our labeled datasets leveraged the rich feature representations
learned from large-scale datasets, improving accuracy and robustness. Additionally,
we applied data augmentation techniques such as resizing, random horizontal flipping,
normalization, padding, and mask downscaling, further enhancing model performance.

Single-channel models generally performed worse than RGB models due to their
limited spectral information. However, the voting classifier improved prediction quality.

Comparing the results of different algorithms and training sets, we observed that
HTC_r50, HTC_r101, and HTC_x101 achieved higher precision, recall, and F1-score
when trained on single spectral channels with a voting classifier than on RGB data. For
Mask2Former, precision was slightly higher with the voting classifier, while accuracy,
recall, and F1l-score were better for RGB data.

For RGB images, the best overall performance across all measures was achieved by
Mask2Former, followed by HTC_x101, HTC_r101, and HTC_r50. For single spectral
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channels with the voting classifier, HT'C_ r50 achieved the highest accuracy and F1-score,
followed by HTC_ x101, HTC_r101, and Mask2Former. Regarding precision and recall,
HTC__r50 performed best, followed by HTC_r101, HTC_x101, and Mask2Former.

According to the accuracy measure, the best performance was achieved by the model
Mask2Former trained on RGB data, while in terms of precision, recall, and F1-score,
HTC_r50 trained on individual spectral channels with a voting classifier performed best.

Another key finding was the identification of optimal spectral channels for maize
growth stage classification. For HTC_r101, channel 07 yielded the best results. For
HTC_x101, channels 05 and 07 were optimal. HTC_ r50 performed best on channel 05,
while Mask2Former achieved the best results on channel 02.

Our solution enables precise plant condition tracking, supporting decision-making in
precision agriculture. Moreover, our method can be adapted to other crops by developing
appropriate datasets and retraining deep neural networks.

6. Discussion of limitations

A multispectral camera with multiple lenses captures spectral channels from different
angles, causing variability in plant shapes across the channels. To mitigate this, a single-
lens system should be used. We explored this approach in our other research.

The models were trained on proprietary datasets with labeled maize images at var-
ious growth stages. The limited diversity of the dataset may affect the models’ ability
to generalize to real-world field conditions. Expanding the dataset with images from
different locations and conditions can improve model performance and robustness.

Our solution was developed specifically for monitoring the developmental stages of
maize. Adapting the method to other crops requires creating new datasets and retraining
the models. However, validating the effectiveness of the developed solution for maize
offers promising prospects for successful application to other crops as well.
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Abstract The performance of convolutional neural networks (CNN) for computer vision problems
depends heavily on their architectures. Transfer learning performance of a CNN strongly relies on
selection of its trainable layers. Selecting the most effective update layers for a certain target dataset
often requires expert knowledge on CNN architecture which many practitioners do not possess. General
users prefer to use an available architecture (e.g. GoogleNet, ResNet, EfficientNet etc.) that is developed
by domain experts. With the ever-growing number of layers, it is increasingly becoming difficult and
cumbersome to handpick the update layers. Therefore, in this paper we explore the application of a
genetic algorithm to mitigate this problem. The convolutional layers of popular pre-trained networks
are often grouped into modules that constitute their building blocks. We devise a genetic algorithm to
select blocks of layers for updating the parameters. By experimenting with EfficientNetBO pre-trained
on ImageNet and using three popular image datasets — namely Food-101, CIFAR-~100 and MangoLeafBD
— as target datasets, we show that our algorithm yields similar or better results than the baseline in
terms of accuracy, and requires lower training and evaluation time due to learning a smaller number of
parameters. We also devise a measure called block importance to measure each block’s efficacy as an
update block and analyze the importance of the blocks selected by our algorithm.

Keywords: computer vision; transfer learning; convolutional neural network; EfficientNet; genetic
algorithm.

1. Introduction

High-performance image recognition models are often developed using Convolutional
Neural Networks (CNN). As the prevalent approach of deep learning in image classifi-
cation, CNNs have shown exceptional supremacy over many approaches in various real-
world machine-learning applications, especially in the broad area of computer vision [18].
The performance of a CNN depend heavily on its architecture [28], [27], and hence, all
of the state-of-the-art CNNs, such as GoogleNet [30], ResNet [13], DenseNet [14] etc.,
are handcrafted by experts who have rich domain knowledge. As it is not always feasible
for general practitioners of CNN to acquire such expertise, these users often opt to use a
pre-designed architecture that suits their need. CNNs are usually designed with a fixed
computational resource budget, and then scaled up at a later time for better accuracy
as more computational resources become available.

The training process of CNNs requires large sized datasets because these models need
to learn a huge number of parameters. Since the parameter space is colossal, sufficient
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quantity of training data are warranted to learn complex patterns. This requirement of
having large datasets, however, can be relaxed using the transfer learning setting [25]
where practitioners reuse existing pre-trained networks, thereby reducing the training
time significantly. In transfer learning, during training phase, the parameters of some
layers of the pre-trained network are kept fixed while updating the rest with the (target)
dataset at hand. Generally, early layers, i.e., the layers near the input, of a CNN detect
low-dimensional information like the color and edges of an image, and the later layers,
i.e., the layers near the output, extract high-dimensional features that help to identify
the ground truth labels [37]. Therefore, for transfer learning, usually the early layers
of the pre-trained model are kept frozen while the parameters of the later layers are
updated.

Some recent empirical studies, however, report good results by applying the opposite
practice, i.e., keeping the parameters of the later layers fixed instead of that of earlier
ones. To mention a few such works: Zunair et al [38] use a VGG16 network [28] pre-
trained with ImageNet for the prediction task of Bangla characters and report that the
best accuracy is found when the first input layer and early fully-connected layers are
selected as update layers. Gafoorian et al [10] apply transfer learning on MRI images
and report that the best performance is achieved when parameters of only six input
layers are updated. Therefore, it is intriguing to investigate into the appropriate layers
to be updated for transfer learning, thereby triggering this research.

Nowadays, common CNN architectures contain a lot of layers. For example, VGG16,
InceptionV3, and GoogleNet have 16, 94, and 22 layers, respectively. EfficientNetB0 and
EfifcientNetB7 [32] have 237 and 813 layers, respectively. When the general users want
to use a pre-trained model, such a large number of layers makes it hard for them to
manually select the appropriate layers to be updated. Manually selecting the layers to
be updated involves a trial-and-error approach which is time consuming and tiresome.

To mitigate this difficulty, there are studies that apply the so-called metaheuristic
optimization algorithms, such as genetic algorithm, to automatically select the effective
layers to be updated (we discuss these works in detail in Section 2). However, we have not
found any work that investigates the problem of selecting the appropriate blocks — not
individual layers — to be updated in a transfer learning setting using genetic algorithms.
Our investigation is dedicated to this endeavor.

In this paper, we develop a genetic algorithm-based [11,22] method to automatically
select blocks of layers — instead of individual layers — to update the parameters. This
technique is expected to significantly minimize the training time of CNNs while main-
taining similar accuracy. We also adapt a recently proposed metric named OTDD [2] to
calculate the importance of the blocks of layers. Using this metric we calculate the con-
tribution of each block in identifying the features of the data. In all these investigations
we use three target datasets, namely, Food-101, CIFAR-100, and MangoLeafBD. As for
the CNN, we use EfficientNet [32] models pre-trained on ImageNet [8].
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The rest of the paper is organized as follows. Section 2 discusses the relevant existing
works. Section 3 presents the background knowledge required to understand the pa-
per. Section 4 presents the framework and methodology of the investigation. Section 5
demonstrates the experimental results. Finally, Section 6 concludes the paper.

2. Related Work

Deep learning and transfer learning are well-known for their effectiveness in image clas-
sification task [23]. It is well-known that the structure and performance of a CNN rely
heavily on its hyper-parameters. Hyper-parameters are often manually chosen by experts
to obtain a model with expected performance. However, different datasets may require
different model structure, and hence, choosing them by trial and error can be tedious.
AszemiDomic [4] discuss the usefulness of different search and optimization methods to
find a suitable set of hyper-parameters. The authors also develop a hybrid optimization
method combining a genetic algorithm with local search that can be used to optimize
CNN structure.

To improve CNN performance, some studies have explored the possibility of training
multiple CNNs at the same time using different means to promote cooperation and spe-
cialization among them. Such sets of CNNs are called committees. Bochinski et al. [5]
propose a way of defining the CNN structure in terms of its hyper-parameters and a
framework to automatically find out the best set of hyper-parameters using an evolu-
tionary optimization algorithm. Additionally, they extend their framework to optimize
a CNN committee. The goal of this study is to establish a framework to optimize CNN
committees for better performance.

Yanan and Bing et al. [29] are inspired by the success of ResNet and DenseNet
and propose a genetic algorithm-based evolutionary approach of automatically designing
CNNs using blocks from ResNet and DenseNet.The proposed algorithm is self-sufficiently
automatic and does not expect any specific domain expertise from the user.

XieYuille et al. [35] venture to find a way to automatically build effective CNN
structures for a given dataset. As the number of possible network structures increase
exponentially with the number of layers in the network, the authors employ a genetic
algorithm to navigate through the expanding search space. They propose a fixed length
encoding strategy which represents a network architecture in the population and a genetic
algorithm that operates on this population to produce better generations. Experiments
with the CIFAR10 and ILSVRC2012 datasets show that their method produces CNNs
with competitive or better recognition accuracy.

Lee et al. [19] propose a genetic algorithm that considers CNN structure and its
hyper-parameters both in the optimization space and produces a CNN with optimal
architecture and hyper-parameter values for the given dataset. The performance of the

Machine GRAPHICS & VISION 33(3):55-70, 2024. DOI: 10.22630/MGV.2024.33.3.3 .


https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.3.3

58 Selecting update blocks of CNNs using genetic algorithm. ..

algorithm is evaluated with 18F-Florbetaben Amyloid PET/CT images for classification
of Alzheimer’s disease.

Loussaie et al. [20] observe that hyper-parameters of a network such as network
depth, number of filters, and their sizes dramatically affect the performance of a CNN.
They propose a genetic algorithm that finds the optimal values of those parameters for
a given dataset, and thus produces an optimal CNN architecture.

Tian and Chen [33] develop a new genetic algorithm to find out the best suited pre-
trained model for different datasets. They come up with a new genetic encoding model
that represents different pre-trained CNN models in the population and an evolution-
ary approach to promote the best performing models in each generation. Experimental
results have evidently shown that their approach outperforms some of the existing clas-
sification methods.

Cai and Luo [7] propose neural architecture search which is a resource-heavy search
mechanism that automatically searches for CNN architectures. The authors devise an
evolutionary framework that employs a multi-task, multi-objective search approach to
find optimally balanced CNN architecture for a given task.

Finally, as discussed earlier, Nagae et al. [24] propose a method to automatically
select effective layers using a genetic algorithm for InceptionV3 network. The authors
also coin a term called Optimal Transport Dataset Distance (OTDD) to quantitatively
evaluate a particular layer’s efficacy as an update layer. They use OTDD to estimate
a layer’s importance as an update layer and compare a layer’s contribution to accuracy
with its OTDD score to reveal that layer OTDD score is indicative of a layer’s capability
of detecting features from the target dataset.

From the above discussion we see that although there are several works that utilize
genetic algorithm to select the best setting of hyper-parameters and network architec-
tures, to the best of our knowledge, there is no existing work that employs a genetic
algorithm to select the best blocks to be updated in a transfer learning setting. Our
investigation presented in this paper has filled this gap in the literature.

3. Background Study

As mentioned earlier, in this investigation we use EfficientNet [32] models pre-trained
on ImageNet [8], though our developed framework is equally applicable to other types
of CNNs. In this section we briefly discuss the architecture of EfficientNet and PathNet.
We also discuss a metric called Optimal Transport Dataset Distance (OTDD).

3.1. EfficientNet

CNNs are often scaled up to achieve better performance. For example, ResNet [13]
can be scaled up from ResNet-18 to ResNet-200 by incorporating more layers. GPipe’s
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ImageNet [15] top-1 accuracy is improved to 84.3% by scaling up the baseline model
by 4 times. Scaling CNNs up by their depth [13] or width [36] are the most commonly
performed by the practitioners, but scaling up the models by image resolution [15] is also
a popular method. Only one of the three dimensions — depth, width, and image size — is
usually scaled. Although two or three dimensions can be arbitrarily scaled, it involves
tedious manual tuning, and yet often fails to provide better accuracy and efficiency. To
resolve this, EfficientNet [32] proposes a simple yet effective compound scaling method
that uses a constant scaling ratio to scale all three dimensions of network in a controlled
and balanced way. The intuition is: as the input image size increases, it makes sense
that the model will need more layers and more channels to extract even finer details
from larger images. In fact, previous studies [21,26, 36] have shown that there is a
certain correlation between network width and depth. The compound scaling method
uniformly scales network width, depth, and resolution with a set of constant scaling
coefficients. In particular, if 2V times more computational resources become available,
then this method simply scales up the network depth by o, width by AV, and image
size by vV, where a, 3,y are constant coefficients chosen through a small grid search on
the baseline network.

3.2. PathNet and StepwisePathNet

When performing transfer learning to the target datasets, each layer of a pre-trained
CNN detects features that are common among the source and target datasets [37].
Therefore, it is imperative to efficiently select layers that are effective feature detec-
tors for the target datasets and then update their parameters while keeping the other
layers frozen. Additionally, as the network architectures have become more complex due
to the increased availability of computational resources, an efficient way of selecting ef-
fective layers without manual labor is required. The StepwisePathNet method [16] tries
to address this specific need. This algorithm expands DeepMind’s PathNet [9] to select
the update layers in a straight-chain network. StepwisePathNet algorithm labels each
layer as either fixed or updated, and the selection is optimized by a genetic algorithm
that employs a tournament selection mechanism.

3.3. Improvement on StepwisePathNet

Citing the limitations of StepwisePathNet, Nagae et al [24] improves the algorithm by
applying another genetic algorithm. The authors work with InceptionV3 architecture [31]
and apply a genetic algorithm to automatically select the effective layers of the network
to be updated during learning for the target dataset.
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3.4. Optimal Transport Dataset Distance (OTDD)

Evaluation of the distance between two labeled datasets has been explored in studies
utilizing the optimal transport distance [2], which provides a way to quantify the differ-
ence between two datasets and correlate dataset distance with transfer learning efficacy.
Optimal transport deals with the issue of transferring material from one place to an-
other at minimum cost, and can also be used to mathematically compare two different
probability distributions [34].

Optimal Transport Dataset Distance (OTDD) [2] is a measure to compute the dis-
tance between two different labeled datasets. Using this metric, in [24], the importance of
a layer is calculated by estimating its effectiveness as an update layer for transfer learn-
ing and its potential for detecting common traits in both source and target datasets.
A subset of feature maps generated at layer [ for both source and target datasets are
taken and denoted respectively as A5°"°® and A;**®". Then, the layer importance LI is
expressed as:

OTDD(Ajouree, 4;7")

LI(l) = i , 1
( ) OTDD(A?ource7A?ource ) + € ( )

were OTDD is calculated using Eq. (16) of [24] and € is a small nonzero positive number.
The denominator in Eq. (1) denotes the optimal transport distance between two different
subsets, source and source’, of the source dataset, where the difference is created due
to the difference in sampling. This ratio basically captures the difference between the
features maps generated for the source and target datasets at a particular layer. Datasets
with similar feature sets should result in similar feature maps at an effective layer,
yielding a lower LI. A lower value of LI indicates higher adaptability of the model for
the target dataset.

4. Proposed Framework and Methodology

It is well-known to the research community that the performance of CNNs is highly
dependent on their architecture, and hence all high performing CNNs like GoogleNet,
ResNet, DenseNet, EfficientNet, InceptionV3 etc. have been manually designed by ex-
perts who possess profound knowledge on CNNs. Unfortunately, such deeper under-
standing of CNNs and expertise in machine learning cannot be expected from all general
practitioners of these models. Hence, general users often opt to use a pre-designed ar-
chitecture that suits their need, thereby giving rise to the notion of transfer learning.
In this setting, the user of a CNN does not need to train the model on a large dataset,
and instead takes advantage of a pre-trained model which has already been trained on
a large source dataset. The intuition behind this strategy is as follows. Some layers of
CNNs extract low level information such as edge, color, shape etc. from input images,
while other layers detect high level features like ground truth labels of the instances.
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Since in image classification task, the edges and low-level shapes of images are needed to
be extracted irrespective of the domain at hand, there is no benefit to re-extract these
features, and so the parameters that contribute to extracting these low level features
are no longer needed to be re-learnt across different domains/datasets. Therefore, in a
transfer learning setting, it is imperative to decide which layers should be kept fixed (i.e.,
no new learning of parameters are needed) and which layers should be learnt/updated
anew for the target dataset. The challenge, however, is, as the depth and complexity of
CNNs are rapidly growing with the increasing availability of computational resources, it
is increasingly becoming infeasible for general practitioners to handpick effective layers
for update.

Many popular CNN architectures such as ResNet, MnasNet, GoogleNet, EfficientNet
etc. are constituted of groups of convolutional layers which are called blocks. Each group
of layer or block helps the model identify a low or high level characterizing feature. From
this intuition, we pose the research question: Can we automatically select appropriate
blocks for update using a genetic algorithm that would yield at least similar accuracy to
the baseline model? The effect will be lesser blocks in the network (i.e., reduced number
of parameters) to be learnt for transfer learning, thereby reducing the execution time.

4.1. Automatic Block Selection for Update by Genetic Algorithm

In our proposed scheme, a genetic algorithm is devised to select the blocks to be up-
dated so as to reduce the training time, and, at the same time, to yield good accuracy
in prediction for the target datasets. A genetic algorithm is a metaheuristic search
algorithm that selects a good-enough solution from the vast search space of potential
solutions. It trades off between exploration and exploitation, which means, optimizing
a potential solution while escaping the local minima. This algorithm, broadly, works as
follows [11,22]. It begins its journey in the solution space with some potential solutions
whose set is called population. It then selects two parent solutions from the solution pool
based on some fitness function, and then applies two operations, namely crossover and
mutation, to generate children solutions. This process is repeated until a good-enough
solution is found. Use of the fitness function ensures exploitation of the search space,
and use of randomization allows exploration of the search space.

In our algorithm, we maintain a binary array to denote the blocks of the network
where each block is denoted by 0 or 1. A 1 means the block is selected for an update.
Thus, for each solution or genotype g, if the ith gene g; is equal to 1, then the corre-
sponding ith block of the network, i.e., the feature extracted model, is selected for an
update, which means, all of the layers of this block are selected as update layers. If
the block is not selected, then its layers are frozen, i.e., the parameters of its layers are
not updated. Initially, all the genes of the genotypes are set either 0 or 1 uniformly at
random. Then, each genotype is evaluated against an evaluation function, which, in our
case, is the classification accuracy. Then, the best two genotypes are chosen, and the
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crossover and mutation operations are performed in order to get offspring genotypes.
This crossover and mutation operations enforce exploration in the search space. We
iterate this process for 100 rounds (known as epochs) to obtain the final (best) model.

4.2. Block Accuracy and Block Importance

In order to understand the impact of each block on accuracy of the target dataset, we
evaluate the obtained test accuracy of the fine-tuned model on target datasets when only
a particular block is selected to be updated. For each block, only that particular block
in the feature extracted model is selected to be updated and the rest are frozen. The
model is then fine-tuned on the target dataset for up to 20 epochs, and the evaluation
accuracy of the final model is recorded as the block accuracy denoted by BA.

Activation feature map datasets for all the source and target datasets are generated
for each block of the pre-trained model, which are then used to calculate the Optimal
Transport Dataset Distance (OTDD) between the pairs of source and target datasets.

The OTDD is calculated according to the method of [2] using their implementa-
tion [3].

Following the definition of layer importance (defined in Eq. (1)), we define block
importance, BI for bth block as follows:

Bi(p) = OTDDUAF™ 475 2)
OTDD(AZOUTCE, Azource’) + € ’

where source and source’ denote two different subsets of the source dataset (as explained
below Eq. (1)). This ratio adeptly captures the difference between the feature maps
generated for the source and target datasets at a particular block. Datasets with similar
feature sets should result in similar feature maps at an effective block, yielding a lower
BI. Lower value of BI indicates higher adaptability of the model for target dataset.

4.3. Model

We apply our proposed scheme on a popular pre-trained network for transfer learning
called EfficientNetB0 which has 237 layers grouped in 8 blocks. For larger models of the
EfficientNet family, similar results are expected since they are just scaled up versions
of the base model and the basic building blocks remain the same. Moreover, since
our method is generic, we expect similar result on other pre-trained networks besides
EfficientNet.

As mentioned earlier, EfficientNetB0 is pre-trained on ImageNet dataset. As target
datasets, we employ three datasets, namely CIFAR-100, Food-101, and MangoLeafBD
(details of these datasets are discussed in the next section). In contrast to the existing
practice of selecting individual layers (as done in [24]), our genetic algorithm select blocks
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of layers for update blocks from the feature-extracted model. The fully connected layers
of the model are always selected as update layers.

Now we discuss the technical details of our algorithm. Regarding the values of hyper-
parameters, we set up some empirical values as follows. We set the population size to 7.
Elite plus roulette method is used as the selection method. The mutation probability is
set to 1%.

The training phase is performed for 100 epochs with the Adam optimizer (with
0.0001 as the learning rate). We note here that while it is natural to try different
combinations of values of these hyper-parameters, in this research our primary goal is to
investigate the efficacy of a generic genetic algorithm. The best model obtained from the
genetic algorithm is then trained on the target dataset. The training accuracy, validation
accuracy, training time and the number of parameters are recorded as evaluation metrics.

5. Experimental Results

In this section we analyze the experimental results and discuss the findings. We measure
the performance against five parameters: update layer/block selection time, training
time, evaluation time, accuracy, and the number of parameters to be learnt.

5.1. Datasets and Experimental Settings

We use three target datasets: (1) CIFAR-100 [17], (2) Food-101 [6], (3) MangoLeafBD [1].
CIFAR-100 is an object recognition dataset with 100 classes each having 500 images
for training and 100 images for testing. Food-101 is a food recognition dataset with
101 classes each of which has 750 training and 250 testing images. MangoLeafBD is
a recently released dataset containing 4000 images of mango leaves with 8 classes of
diseases. Figures 1, 2, and 3 show some sample images from the three datasets. All input
images are shuffled, resized to 224 x 224 pixels, batched and pre-fetched for optimal data
loading and training performance. All experiments are performed in a single NVIDIA
GeForce RTX 2060 with a batch size of 32.

5.2. Baseline: Automatic Layer Selection by Genetic Algorithm

As the baseline method, we compare our method with the work of Nagae et al. [24]. The
authors of this work use a genetic algorithm to select the appropriate update layers for
the target datasets. So we think this work is an appropriate baseline for our proposed
method.
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Tab. 1. Performance comparison between the existing benchmark algorithm and our proposed algorithm
on three datasets. LayerSelect — layer selection algorithm by [24]; BlockSelect — our proposed
block selection scheme. Parameters: Runtime — time taken by the layer/block selection algo-
rithm; Training time — neural network’s training time after selecting layers/blocks; Evaluation
time — testing time; Accuracy — percentage of correct predictions on test set; # parameters —
number of parameters to be learnt for learning the target datasets.

Fig. 1. Sample images from CIFAR10 dataset.

Dataset — | Food-101 | CIFAR-100 | MangoLeafBD
Parameter | | LayerSelect | BlockSelect | LayerSelect | BlockSelect | LayerSelect BlockSelect
Runtime 3h 43 min 1h 34 min 39 min 12min 19s 2min 42s
Training time 31 min 21 min 28 min 19 min 19 min 18 min
Evalation time 42 ms 32ms 31 ms 31 ms 58 ms 99 ms
Accuracy 0.77 0.79 0.81 0.82 1.0 0.997

# parameters 5,79, 813 | 31,13,413 | 2, 56, 500 8, 30, 758 3, 61, 896 4,24, 784

5.3. Performance Comparison

Table 1 presents the experimental results of Food-101, CIFAR-100, and MangoLeafBD
target datasets. Here, LayerSelect indicates the layer selection algorithm of [24], and
BlockSelect indicates our proposed algorithm. In the 1st column, runtime means the
time taken by the layer/block selection algorithm, training time is the neural network’s
training time after selecting layers/blocks, evaluation time means the testing time, ac-
curacy is the percentage of correct prediction on test set, and finally # parameters is
the number of parameters to be learnt for learning the target datasets.

From the experimental results we see that our proposed block selection algorithm
works much faster than the existing baseline, i.e., the layer selection algorithm [24].
Still we achieve slightly better results in two datasets and slightly worse result in the
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Fig. 2. Sample images from Food-101 dataset.

other dataset. Overall, the block selection algorithm is found to maintain similar level
of accuracy while reducing the training and evaluation time.

From the experimental results it is evident that the block selection algorithm is faster
than the layer selection method and yields a model that has similar or better accuracy
and inference time.

5.4. Block Importance and Block Accuracy

Table 2 presents the values of Block Importance (BI) and Block Accuracy (BA) metrics
for the target datasets, and Fig. 4 illustrates the results graphically. BI is calculated
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Fig. 3. Sample images from MangoLeafBD dataset.

Tab. 2. Block Importance (BI) and Block Accuracy (BA) of various blocks for all three datasets.

‘ Food-101 ‘ CIFAR-100 ‘ MangoLeafBD
Block ‘ BI ‘ Train BA ‘ Test BA ‘ BI ‘ Train BA ‘ Test BA ‘ BI ‘ Train BA ‘ Test BA

1 1.420 0.84 0.72 1.952 0.88 0.72 1.491 1 0.993

1.484 0.83 0.72 1.471 0.89 0.72 1.459 1 0.995
3 1.073 0.83 0.72 1.152 0.89 0.72 1.259 1 0.995
4 1.072 0.82 0.72 0.964 0.90 0.71 1.078 1 0.995
5 1.011 0.84 0.72 1.021 0.89 0.72 0.029 1 0.995
6 0.959 0.84 0.72 1.000 0.90 0.71 0.815 1 0.995
7 1.132 0.82 0.72 0.965 0.89 0.72 0.022 1 0.995

using Eq. (2). BA is the obtained from the training and test accuracy when transfer
learning is performed considering only the update layers of that block.

Conventionally, in transfer learning, it is believed that updating the layers close to
the output side of the network is more effective. From our experimental data we cannot
decisively claim this conjecture to be true, but it is evident that updating output side
blocks works pretty well. We also see that updating blocks with lower BI values results in
high training and testing accuracy. Though we cannot conclusively claim that updating
the blocks with higher BI does not work, the trends shown by the experimental data
evidently suggests that updating blocks with lower BI is effective for transfer learning.
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Fig. 4. Block Accuracy (BA) and Block Importance (BI) of various blocks of different datasets.
(a) FOOD-100 dataset; (b) CIFAR-100 dataset; (¢) MangoLeafBD dataset.

6. Conclusion

In order to assist practitioners of transfer learning select appropriate parameters of a con-
volutional neural network, in this research we have proposed a genetic algorithm-based
solution that automatically selects CNN blocks, i.e., groups of layers, for the parameters
to be updated only in these layers, for effective transfer learning. The proposed block
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selection algorithm selects blocks of the network instead of layers, which results in less
computational time requirement and yet yields similar or slightly better accuracy over
the baseline method. Currently the proposed block selection algorithm is only imple-
mented for a popular CNN called EfficientNet. This algorithm may easily be extended
to other types of CNNs. The genetic algorithm devised here can also be honed using
sophisticated methods and hyper-parameter tuning. In addition, other metaheuristic
algorithms (like simulated annealing [12]) can be investigated to better select the layers
and blocks for update.
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Abstract In computer vision, Convolutional Neural Networks (CNNs) have become a foundation
for image analysis. They excel in tasks such as object recognition, classification, and more, semantic
segmentation. In order to achieve better accuracy, it is crucial to apply normalization techniques to
the network for enhancing overall performance. This paper introduces an innovative approach that
incorporates Batch Group Normalization (BGN) into the popular U-Net for binary semantic segmen-
tation, with a particular focus on aerial road detection. Our research primarily focuses on evaluating
the BGN-UNet’s performance compared to traditional normalization techniques, such as Batch Nor-
malization (BN) and Group Normalization (GN). With a batch size of 2, the U-Net model enhanced
with Batch Group Normalization (BGN-UNet) achieves a remarkable Mean IoU of 98.4% in aerial road
segmentation, demonstrating its superior accuracy in this task.

Keywords: image analysis, image recognition, normalization techniques, batch group normalization,
semantic segmentation, BGN-UNet, aerial road detection.

1. Introduction

Road extraction proves to be a crucial task in the analysis of remote sensing imagery [4].
It plays a significant role in various aspects of society and the economy. Despite its
importance, accurately extracting roads faces challenges due to the presence of non-road
objects, and the complexity of the background. These factors contribute to the difficulty
of achieving precise road extraction. Addressing these challenges frequently requires the
utilization of pixel-wise semantic segmentation to extract road areas accurately (Fig. 1).

Semantic segmentation, a fundamental task in computer vision, involves the classi-
fication of individual pixels in an image into distinct object categories, thus aiding in
a good comprehension of visual content [12]. In this field, the UNet architecture has
proven to be reliable and effective across various applications [27,28].

Our research focuses on the more recent innovation, Batch Group Normalization
(BGN). When integrated into the UNet architecture, BGN exhibits the potential to
enhance the accuracy and efficiency of convolutional neural networks for tasks like binary
semantic segmentation, with a specific emphasis on road detection.

Figure 2 displays different normalization techniques: Batch Normalization (BN),
Layer Normalization (LN), Group Normalization (GN), and Batch-Group Normalization
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a b

Fig. 1. Binary Semantic Segmentation for Aerial Road Image. (a) Aerial Road Image. (b) Segmentation
for the Aerial Road Image.
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Fig. 2. Normalization Techniques.

(BGN). In each subfigure, you can see a feature map tensor, with axes representing the
batch size (IV), the number of channels (C), and the spatial dimensions (H,W). The
pixels in purple are used to compute the statistics. BGN offers a unique perspective
by combining the dimensions of channels, height, and width into a unified dimension
and subsequently partitions this new dimension into distinct feature groups. This paper
looks at how normalization methods in deep learning have changed over time. It also
talks about how using BGN can make UNet better for tasks like semantic segmentation.
The upcoming sections will offer comprehensive information on our research methods,
the results of our experiments, and the discussions that follow. This will illuminate the
power of combining U-Net and BGN in the constantly evolving fields of computer vision
and deep learning.

The remainder of this paper is organized as follows. Section 2 reviews related works
relevant to our study. Section 3 details the methodology, including the normalization
techniques (Subsection 3.1), data preprocessing (Subsection 3.2), and data augmenta-
tion (Subsection 3.3) employed in the study. In Section 4, we describe the application
of BGN-UNet to aerial road segmentation, with Subsection 4.1 in which the model is
described, and Subsection 4.2 focusing on the contributions and novelty of the proposed

Machine GRAPHICS & VISION 33(3/4):71-96, 2024. DOI: 10.22630/MGV.2024.33.3.4 .


https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.3.4

R. Doghmane, K. Boukari 73

model. Section 5 presents the results and discussion, along with an ablation study (Sub-
section 5.1), practical applications of BGN-UNet in road detection (Subsection 5.2) and
the challenges and considerations for practical implementation of BGN-UNet (Subsec-
tion 5.3). Finally, Section 6 concludes the paper by summarizing the key findings and
implications of this work.

2. Related works

A novel end-to-end generative adversarial network was introduced by Zhang et al. [38]
to carry out the road extraction task in aerial images. The combination of DCGAN and
CGAN was utilized in their model for extracting roads from aerial images, followed by
the replacement of deconvolutional layers with FCN. Therefore, the performance of the
model is significantly impacted by data from different sources. A deep learning model,
called the Recurrent Convolutional Neural Network U-Net (RCNN-UNet), was proposed
by Yang et al. [34] for road detection and centerline extraction. It is an end-to-end
deep learning model that exploits the spatial context and rich low-level visual features
through the design of the RCNN unit. However, this can be computationally intensive
and may require significant resources, including computational power and memory.

In addition, a novel deep learning-based convolutional network called VNet model
with 2D convolutional kernel to extract road networks from high-resolution remote sens-
ing imagery was introduced by ABOLFAZL et al. [2] a new objective loss function based
on cross-entropy and dice loss (CEDL) was used to combine local information and global
information, diminish the influence of class imbalance, and improve road segmentation
results. However, the use of 2D convolutional kernels and the fully convolutional architec-
ture can lead to significant computational overhead, particularly when processing large
datasets. This may result in longer training times and increased resource requirements.

Furthermore, an improved road detection algorithm [10] that integrates Deep Con-
volutional Neural Networks (CNNs) with a Random Forest classifier has been proposed
to enhance the accuracy of analyzing Very High Resolution (VHR) remotely sensed im-
ages. However, the performance of the algorithm is highly dependent on the quality and
quantity of training data, which can pose a limitation in areas with insufficient labeled
datasets.

Recent advancements in road extraction from high-resolution remote sensing images
have been marked by the RADANet model [9], which employs a deformable attention
mechanism to enhance feature extraction in complex environments, demonstrating supe-
rior performance compared to traditional techniques. However, a major limitation is its
difficulty in effectively utilizing the spatial relationships and structure of roads, making
it challenging to improve extraction accuracy in complex road settings.

According to Shaofu et al. [19] the proposed method MS-AGAN offers an efficient,
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cost-effective, and reliable approach for dynamically updating road networks using high-
resolution remote sensing images. However, despite its improved performance in road
extraction, it may still encounter difficulties in complex scenes with high vegetation
coverage and occlusions, leading to fragmentation and discontinuities in the extracted
road networks.

Moreover, the authors of [18] propose an improved UNet++ network suitable for
road extraction from high-resolution remote sensing images. By integrating the CBAM
module and incorporating weight information in both channel and spatial dimensions of
the feature map, this approach effectively suppresses the network’s learning of non-road
information, resulting in a more efficient and targeted model.

In summary, the proposed improvement of the UNet network for road extraction from
remote sensing images offers notable strengths and weaknesses [30]. It enhances feature
extraction through a CNN-Transformer architecture, improving segmentation accuracy
with a double upsampling module and a combination of cross-entropy (CE) and Dice loss
functions. This results in good training stability, robustness, and generalization across
various datasets compared to established models like UNet, PSPNet, DeepLabV3, and
TransUNet. However, the algorithm also exhibits high computational complexity and
long training times, making it less suitable for mobile or embedded devices. Its resource-
intensive nature may limit real-time applications, and the model’s complexity could lead
to overfitting on smaller datasets. Thus, while the approach shows promise in enhancing
road extraction accuracy, its practical applicability is constrained by these limitations,
indicating a need for future research into more efficient methods for image semantic
segmentation.

Researchers in deep learning are always looking for ways, like normalization meth-
ods, to improve the training efficiency, generalization, and overall performance of neural
networks. Throughout the years, a series of normalization techniques have been explored
by researchers to enhance the training and generalization of deep learning models. This
chronological survey encompasses the inception of Batch Normalization in 2015 by [14],
extending to the more recent introduction of Batch Group Normalization (BGN) by Zhou
in 2020 [42]. The timeline of normalization methods began with Batch Normalization
(BN), which revolutionized deep learning by stabilizing training dynamics and acceler-
ating convergence. Subsequently, Group Normalization (GN), proposed by Wu and He
in 2018 [33], addressed certain limitations of BN, particularly when dealing with small
batch sizes. Furthermore, Layer Normalization [7], Weight Normalization [25], Instance
Normalization [29], and Positional Normalization [17] were introduced, each catering to
specific requirements and contributing to the maturation of deep learning models.
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3. Methodology

3.1. Normalization techniques

Normalization plays a crucial role in the training of Convolutional Neural Networks
(CNNs) to ensure stable and effective learning. A standard normalization layer involves
four steps: (1) grouping the feature map into distinct feature groups; (2) computing
mean and variance statistics for each feature group; (3) normalizing each feature group
using the calculated statistics; and (4) adjusting the normalized feature map to preserve
the representation ability of the Convolutional Neural Network (CNN).

Batch Norm is a normalization technique done between the layers of a Neural Network
instead of in the raw data [14]. In a neural network, batch normalization (BN) is achieved
through a normalization step that fixes the means and variances of each layer’s inputs [35]
as schematically shown in Figure 2. Normalization is applied separately to each group
of data, called a mini-batch, during the training process. This is a general formulation
of feature normalization expressed as:

wim (i — ) (1)

o

Here, = represents the feature computed by a layer, and 7 is an index. In the context
of 2D images, i = (in,ic,im,iw) is a 4D vector indexing the features in the order
(N,C, H,W), where:

e N is the batch axis,

e C is the channel axis,

e H is the spatial height axis, and

e W is the spatial width axis.

In Batch Normalization, the transformation applied to the input feature to compute

the normalized output is given by the following formula:

Si={k|kc=1ic}, (2)

where i¢c (and k¢) denotes the sub-index of ¢ (and k) along the C axis. This implies
that pixels sharing the same channel index are normalized together. In other words, for
each channel, Batch Normalization (BN) computes p and o along the (N, H, W) axes.
In other words, the mean and variance are calculated along the batch dimension. Thus,
the transformation helps to normalize the input and make the optimization process more
stable during training.

According to [36], Batch Normalization does not work effectively for tasks requiring
training with small batches, such as image segmentation, often due to memory limita-
tions. Efforts have been made to explore alternative normalization techniques, including
Group Normalization, where normalization is applied across partitions of features or
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channels, with different pre-defined groups [33]. In Group Normalization (GN), the nor-
malization is performed across partitions of features or channels. The formula for Group
Normalization is as follows:

e B
where:

e GG is the number of groups (pre-defined hyper-parameter, with G = 32 by default),
e C'/G is the number of channels per group,
e |- | denotes the floor operation,

c/a c/a

assuming each group of channels is stored in a sequential order along the C axis.

In Batch Group Normalization (BGN) technique, the channel, height, and width
dimensions are initially concatenated into a new dimension, resulting in a flattened
representation denoted as Fxxp, where D = C' x H x W. The mean g in (4) and
variance 02 in (5) are then computed along both the batch and the new dimension.

. Lk—CJ = [ ic J means that the indexes 7 and k are in the same group of channels,

g.S

N
Hg = N xS Z Z fn,da (4)

n=1d=(g—1).S+1
1 N
U; = N x S Z Z (frna— /~Lg)27 (5)

where g = 1,...,G is a group index used in the group normalization technique and G is
the number of groups that the new dimension is divided into, and is a hyper-parameter;
fn.a is a member of F(1)nxp, representing a feature instance after merging the channel,
height, and width dimensions into a new dimension; D = C x H x W, where C, H, and
W are the channel, height, and width dimensions, respectively. Further, S = M/G is
the number of instances inside each divided feature group. The notation g.S represents
the range of feature instances included in group g for the calculation of the mean yu4 and
variance 03. Specifically, the summation over d goes from (g —1).5+1 to ¢.5, indicating
that each group ¢ contains S feature instances along the new dimension D.

[

BGN dynamically adjusts the number of feature instances used for statistical calcu-
lation, employing the group technique from Group Normalization (GN). When dealing
with a small batch size, a smaller value for G is chosen to combine the entire new di-
mension, preventing noisy statistics. Conversely, with a larger batch size, a larger G is
selected to partition the new dimension into smaller segments, facilitating the calculation
of more accurate and less confused statistics. That is why, In our training process, G=2
was used for a batch size of 2 to combine the entire new dimension, and G=32 was used
for batch sizes 8 and 16.
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Fig. 3. BGN-UNet Architecture.

This multi-step approach allows BGN to capitalize on the generalization capabilities
of GN, while also addressing the limitations of BN. Batch Group Normalization (BGN)
has been implemented as a custom layer within the Keras deep learning framework.

Figure 3 provides a visual representation of the BGN-UNet model’s architecture based
on the original UNet architecture [23]. It illustrates how Batch Group Normalization
(BGN) is incorporated into the UNet structure. Figure 4 compares the convolutional
blocks in the standard UNet model with those in the BGN-UNet, emphasizing the dif-
ferences in their structures and how BGN is employed.

BGN-UNet is defined for image segmentation tasks. Within this network, convolu-
tional blocks, encoder blocks, and decoder blocks are included. The basic building block
of the network is defined by the conv block function. It applies convolutional layers
with BatchGroupNormalization and ReLLU activation functions. This block is used to
extract features from the input data. The encoder block function combines the convo-
lutional block with max-pooling, allowing the network to progressively downsample the
input image and capture high-level features. The decoder block function handles the
upsampling and feature concatenation process. It uses transpose convolutional layers to
increase the spatial resolution and combines the features from the encoder to refine the
segmentation. The build unet function is responsible for constructing the entire UNet
architecture, which consists of encoder and decoder blocks.

The choice of the final activation function is determined by the number of classes in
the output. In the specific context of binary semantic segmentation, where the objective
is to differentiate between two distinct classes, the choice of the activation function at the
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Fig. 4. Convolutional Blocks in UNet and BGN-UNet.

output layer is the sigmoid function which is preferable as output activation function [5].
This function assigns a continuous value to each pixel within the segmented image [31],
ranging from 0 to 1. Pixels closer to a value of 1 are indicative of belonging to the road
class, while those closer to 0 are representative of the non-road class. In essence, the
BGN-UNet is designed for image segmentation tasks, where it takes an input image and
produces a segmented image as the output. It effectively combines convolutional lay-
ers, normalization techniques, and upsampling to capture detailed features and produce
accurate segmentations.

3.2. Data preprocessing

To make it easier to understand and analyze the data, it is imperative to systematically
structure and format the dataset. The way data is prepared can vary significantly based
on what we want to achieve with the data and the methods we plan to use for analysis [1].
In our research, a road dataset comprised of two distinct sequences is employed. The first
sequence consists of 224 images, each possessing dimensions of 848 x480 pixels, while the
second sequence encompasses 109 images, each characterized by dimensions of 1280x720
pixels, all of these come with corresponding ground truth.

The dataset used for this study can be downloaded from internet and was previously
utilized by [39]. However, we would like to note that the original source for downloading
the dataset [40] appears to be unavailable at this time. In the meantime, the dataset
can be accessed via the link in [41].
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Data preprocessing is an indispensable phase in the pipeline of image analysis, par-
ticularly in the context of road segmentation. The following steps encapsulate the pro-
cedures employed to transform the raw data into a structured and manageable dataset,
each step is guided by a specific rationale:

1. Color space conversion to grayscale

In the first step of our process, the original RGB images are transformed into grayscale

versions. This is done to simplify the data and make it more efficient for our model.

Grayscale images reduce complexity and memory usage since they remove color in-

formation while preserving the critical road segmentation details [15]. This approach

improves computational efficiency and helps us optimize resource usage.
2. Padding for dimension alignment

Our goal here is to apply reflection padding to resize images in a way that their

dimensions become divisible by 256. Reflection padding helps maintain the continuity

and information within the image. The rationale behind using padding lies in its
importance for achieving uniformity in image dimensions allowing the images to be
divided into smaller images (patches) each measuring 256x 256 pixels. After applying
padding, the images in the first sequence have a size of 1024x512 pixels, and in the
second sequence, the images are resized at 1280x 768 pixels.

3. Patch creation for training

Our objective is to create image patches as a solution for segmenting larger images.

This process involves dividing the larger images into smaller without overlapping. By

partitioning the images into patches, a diverse training dataset is generated, consist-

ing of 1792 patches from the first image sequence and 970 patches from the second
sequence. The expression (6) below illustrates how to calculate the number of created
patches as it is shown in Figure 5. The choice of a patch size of 256256 has been
made for the sake of computational efficiency, striking a balance between capturing
adequate spatial information and maintaining a manageable computational load. It
is observed in the literature and established practices for similar tasks that a patch
size of 256x256 is commonly chosen, reflecting a widely adopted approach in the

field [16,21].
SIZE_X SIZE_Y
n= . . (6)
patch__size patch__size

4. Elimination of non-informative patches

Pruning non-informative patches is very important for data quality and model effi-
ciency. By retaining only patches with pertinent road-related content as shown in
Figure 6, it is ensured that the training dataset is composed exclusively of relevant
information, enhancing the model’s accuracy and mitigating the inclusion of noise or
irrelevant details. The selection of patches was automated based on the presence of
information in the corresponding masks, avoiding manual elimination [8].
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Fig. 5. Creating patches.
truth.

Fig. 6. Elimination of non-informative patches. (a) Informative images patches; (b) informative ground
truth patches.

5. Fusion of image sequences

The fusion of image sequences yields a unified dataset of 906 images. This fusion
enhances the dataset’s richness, incorporating diverse scenarios from both sequences,
and increases the model’s capacity to generalize across different road environments
and improving the robustness of the road segmentation model.

6. Data normalization

Data normalization is the process of transforming raw data values to another form
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with properties [3]. In this case, our data must be more suitable for neural network
algorithms which require data that are on a 0-1 scale.

Each of these steps contributes to the overall data preprocessing strategy, ensuring
that the dataset is meticulously prepared and optimized for the road segmentation task.
Given that our dataset is relatively small, with images of 1024x512 and 1280x 768 pixels,
we have the opportunity to train our UNet model from scratch, which is particularly
advantageous for adapting to the specific characteristics of our dataset.

3.3. Data augmentation

Data augmentation is a technique used to increase the size of a dataset by applying
various transformations to the original images. This technique is particularly useful
in deep learning tasks, where a large amount of data is required to train the model
effectively [26]. In this study, data augmentation was employed to augment the size of
the dataset, which consisted of 906 grayscale images with dimensions of 256x256, for
aerial road segmentation using the UNet model and batch group normalization.

While it’s true that a small dataset might limit how well the model generalizes to
larger datasets, image augmentation techniques can help improve performance by gen-
erating additional training samples through techniques like rotation and flipping. This
effectively increases the diversity of the training data without needing more labelled
samples. In fact, augmentation can help prevent overfitting and improve model robust-
ness, leading to better performance even when applied to larger datasets [37]. Although
a small dataset is a limitation, these techniques can mitigate its impact and enhance
generalizability.

Even though the study uses a small dataset, the method, along with data augmenta-
tion, can also work well with larger datasets. We plan to test its effectiveness on larger
datasets in future research.

Also, according to [24] the size of the dataset required may depend on various factors
such as the complexity of the task and the number of parameters. This statement implies
that for simpler tasks or those with fewer parameters, smaller datasets may suffice for
effective training.

The data augmentation techniques presented in [6], including horizontal and vertical
flipping to help the model learn to recognize road patterns in different orientations,
as well as rotation, were implemented. These techniques were applied to the original
images to generate new training examples. The augmented dataset was then used to
train the UNet model with batch group normalization. In our approach to aerial road
segmentation, data augmentation played a crucial role, enabling an increase in the size
of our dataset and an improvement in the accuracy of our model. The utilization of a
highly accurate and efficient model for aerial road segmentation was achieved through
the combination of UNet and batch group normalization with data augmentation.
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4. Aerial road segmentation using BGN-UNet

4.1. The model

The UNet model is constructed with a series of convolutional and decoder blocks, each
meticulously designed to capture and refine features for binary segmentation tasks. The
convolutional block ((conv_block) is a crucial building block, comprising two consecu-
tive 3x3 convolutional layers. Notably, Batch Group Normalization is incorporated into
the (conv_block), enhancing the stability and efficiency of the network during training.
Following the convolutional layers, Batch Group Normalization is applied, followed by
Rectified Linear Unit (ReLU) activation, synergistically contributing to feature extrac-
tion. On the other hand, the decoder block (decoder_block) leverages a transposed
convolutional layer with a 2x2 kernel for effective upsampling. The upsampled fea-
tures undergo concatenation with corresponding features from the encoder block and
are subsequently processed through the (conv_block) to extract informative features.
Throughout the UNet architecture, the encoder systematically downsamples the input
image through convolution and max-pooling operations. Conversely, the decoder adeptly
upsamples the features to generate a segmentation map. In the context of this binary
segmentation task, the final layer of the model employs a 1x1 convolution with a sig-
moid activation function, facilitating the precise prediction of pixel-wise binary masks.
This thoughtful architectural choice, integrating 3x3 convolutions, Batch Group Nor-
malization, and the appropriate activation function, underscores the model’s efficacy
in capturing spatial information and thereby enhancing its performance in accurately
delineating objects of interest in the input images.

To evaluate the performance of the proposed model, experiments were conducted us-
ing an aerial road dataset described in the research paper titled Efficient Road Detection
and Tracking for Unmanned Aerial Vehicles [39]. Specifically, 1792 aerial images from
this dataset were utilized. As previously explained in the data preprocessing section 3.2,
before training the model, the data is prepared. To enhance manageability, the large
images are partitioned into smaller 256 by 256 pixel images, commonly referred to as
patches, and are represented in grayscale. This approach simplifies data processing and
model training. The dataset used in this study comprises a total of 906 informative
patches extracted from road aerial images. To facilitate the training and evaluation
of our model, the dataset is randomly partitioned into three distinct sets. These sets
are designated for various purposes: one is allocated for training the model, another
is reserved for validation during the training process, and the final set serves as the
test set for the evaluation of model performance. The division is conducted using the
train_test_split function, which separates the image and mask datasets into 724 im-
ages for training (80%), 91 images for validation (10%), and 91 images for testing (10%),
in order to ensure the consistency of results across experiments.

Figure 7 highlights the flowchart of methodologies used in this paper. The model
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Fig. 7. Flowchart of the proposed methodology.

hyperparameters, as outlined in the Table 1, encompass settings for the training process
and data information. In general, our model produces favorable results with minimal
distortion and negligible false detections, as shown in Figure 8. In Figure 9, four ran-
domly selected patches from the test set are showcased, segmented using the BNG-UNet
model. These patches present varying levels of difficulty while consistently demonstrat-

ing amazing segmentation results.

Tab. 1. Model hyperparameters.

Parameter Value

Learning Rate 1x1073

Loss Function Binary Cross-entropy
Epochs 25

Batch Size 16

Group 32

Optimizer Adam Optimizer

Validation Split

Total Params

Trainable Params
Non-Trainable Params
Image Data Shape

Mask Data Shape

Max Pixel Value in Image
Labels in the Mask

Patch Size

0.20, Random State = 42
31065921 (118.51 MB)
31054145 (118.46 MB)
11776 (46.00 KB)

(906, 256, 256, 1)

(906, 256, 256, 1)

255

[0, 255]

256x256x 1
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Aerial Image Prediction

Fig. 8. Semantic Segmentation of the Aerial Road Image with BGN-UNet

4.2. Contributions and novelty

This paper presents several significant contributions and novel aspects in the domain
of aerial road segmentation using an Enhanced U-Net model, specifically incorporating
Batch Group Normalization technique (BGN). The key contributions are outlined below:

A novel normalization technique, Batch Group Normalization (BGN), has been incor-
porated into the U-Net architecture. This method addresses the performance limitations
of Batch Normalization (BN) at very small or extremely large batch sizes by leveraging
the grouping strategy employed in Group Normalization (GN). It combines the channel,
height, and width dimensions into a unified representation, partitions this dimension
into feature groups, and computes the statistics across both the feature groups and the
entire mini-batch to enhance performance. By effectively stabilizing training dynamics,
BGN enhances model convergence and accuracy.

Building upon this, the proposed BGN-UNet architecture modifies the traditional
U-Net framework by implementing BGN layers, which allows for better feature extraction
and representation in aerial imagery. This adaptation is particularly beneficial for binary
semantic segmentation tasks, where precise delineation of road areas is critical.

In line with these theoretical improvements, our experimental results demonstrate
that the BGN-UNet achieves a Mean Intersection over Union (ToU) of 98.4% (See sec-
tion 5), significantly outperforming traditional normalization techniques such as Batch
Normalization (BN) and Group Normalization (GN). This remarkable accuracy under-
lines the effectiveness of our proposed model in real-world applications.

Furthermore, a thorough comparative analysis of the BGN-UNet model is provided
against several state-of-the-art models for aerial road segmentation. This evaluation
highlights the superior performance of the approach and discusses its robustness in han-
dling complex urban environments with various road types and conditions.

In summary, the distinctive contributions of this paper lie in the innovative inte-
gration of BGN into the U-Net architecture, achieving superior segmentation accuracy,
conducting comprehensive evaluations against existing models, and addressing practical
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challenges in aerial road detection. These elements collectively underscore the novelty
and significance of our research in advancing methodologies for semantic segmentation
in aerial imagery.

5. Results and discussion

Among the various normalization methods, two specific techniques, Batch Normalization
(BN) and Group Normalization (GN), have been chosen as the baseline methods to
be used in the U-Net architecture. These methods will serve as reference points for
comparing the performance of the novel Batch-Group Normalization (BGN) technique
when combined with the UNet architecture, which is being introduced and evaluated.
By comparing BGN-UNet to these established normalization techniques, we can assess
its effectiveness and potential advantages. This evaluation allows us to understand the
performance of the novel Batch-Group Normalization (BGN) technique when integrated
with the U-Net architecture.

In our UNet model, BGN has been utilized to optimize the network’s performance.
Testing was conducted in image segmentation, a challenging task, with a specific focus
on its performance with aerial imagery. Initial results suggest that BGN might offer
advantages over traditional BN and GN methods.

In our comprehensive experimental design, an assessment of three distinct models
BN-UNet, GN-UNet, and BGN-UNet was conducted. The impact of varying batch sizes
(2, 8, and 16) across a consistent 25 epochs training period was systematically explored.
Despite the constraints of a small dataset and only one GPU, our model still achieves
good results. The selection of the Adam optimizer, a widely recognized choice in deep
learning, greatly facilitated our training process by ensuring efficient convergence and
adaptive learning rates [22]. To fit our approach to binary segmentation, focusing on
the detection of road and non-road classes, the binary cross-entropy loss function was
employed. Cross-entropy serves as a loss function in neural networks in machine learning,
offering a metric to gauge the likeness between predicted and actual values [13]. While
our resources may appear limited, our results consistently demonstrated that BGN-UNet
outperformed both BN-UNet and GN-UNet, particularly in terms of Mean Intersection
over Union (IoU).

In our experiments with three different normalization methods BN-UNet, GN-UNet,
and BGN-UNet using varying batch sizes of 2, 8, and 16, interesting results were observed
in terms of Mean IoU, which is a measure of segmentation accuracy. For the smallest
batch size 2, the BGN-UNet achieved a Mean IoU of 0.9727, while BN-UNet and GN-
UNet had Mean IoU scores of 0.9673 and 0.9687, respectively. As the batch size was
increased to 8, it was observed that BGN-UNet outperformed both GN-UNet and BN-
UNet, achieving a higher accuracy with a Mean IoU value of 0.9729. In comparison,
GN-UNet had a Mean IoU of 0.9724, while BN-UNet lagged behind with a score of

Machine GRAPHICS & VISION 33(3/4):71-96, 2024. DOI: 10.22630/MGV.2024.33.3.4 .


https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2024.33.3.4

R. Doghmane, K. Boukari 87

Tab. 2. Mean IoU for Different Batch Sizes and Models

Model Batch Size 2 Batch Size 8 Batch Size 16
BN-UNet 0.96733713 0.96600366 0.97286165
GN-UNet 0.9687331 0.97235453 0.9730376
BGN-UNet 0.9726844 0.9729512 0.9740099
BGN-UNet+data augmentation 0.98135 0.9821 0.9840

0.9660. When using a batch size of 16, BGN-UNet recorded the highest Mean IoU
of 0.9740, outperforming both BN-UNet 0.9729 and GN-UNet 0.9730. In summary,
BGN-UNet consistently achieved the best segmentation accuracy across all batch sizes,
outperforming both BN-UNet and GN-UNet. These results highlight the effectiveness
of Batch-Group Normalization (BGN) in improving the U-Net model’s performance in
semantic segmentation tasks. The Table 2 shows the Mean IoU values for various batch
sizes in the BN-UNet, GN-UNet, and BGN-UNet models.

When predicting patches from a large image (1024x512) using the BGN-UNet model,
it has been observed that the first patch takes approximately 18 seconds to process (com-
pared to 12 seconds for the BN-UNet model and 15 seconds for the GN-UNet model.),
while the remaining 7 patches are predicted almost instantaneously. This initial delay
is due to model initialization overhead, which includes tasks such as loading weights,
setting up the neural network in memory, and performing preprocessing steps. Once
these tasks are completed, the model is fully operational, allowing for the rapid pre-
diction of subsequent patches. BN-UNet is generally faster because it relies on batch
normalization, which uses batch statistics, resulting in faster initial processing. On the
other hand, GN-UNet uses group normalization, which normalizes within groups with-
out depending on batch size, leading to a middle-ground processing time compared to
BN-UNet and BGN-UNet. In summary, the 18 seconds for the first patch mainly come
from initialization and setup overhead, while the near-zero time for the following patches
reflects efficient reuse of the initialized model, significantly speeding up the process for
the remaining patches — see Fig. 7.

Our results show that BGN-UNet is very adaptable and efficient, making it a valuable
tool for tasks like binary segmentation, especially in situations where data is limited,
and computational resources are constrained. To summarize, BGN-UNet appears to
perform well with small datasets in binary segmentation tasks, as our findings indicate.
The visual representations of training and validation Metrics as shown in Figs. 10, 11,
and 12 provide a comprehensive overview of the performance evaluation of the three
models under varying batch conditions. Favorable results with minimal distortion and
negligible false detections can be observed in the BGN-UNet graphs.
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Fig. 12. Training and validation metrics for batch size 16: (a) BN-UNet; (b) GN-UNet; (c) BGN-UNet.

5.1. Ablation study

The choice of batch size significantly influences the training dynamics and convergence of
deep learning models. To understand the effect of batch size on model performance, we
conducted experiments using three different batch sizes: 2, 8, and 16. The performance
metric used for evaluation was the Mean IoU (Intersection over Union). The results
for the BGN-UNET model are as follows: for Batch Size 2, the Mean IoU was 0.98135;
for Batch Size 8, the Mean IoU increased slightly to 0.9821; and for Batch Size 16, the
highest Mean IoU of 0.9840 was achieved.

As the batch size increased, we observed a slight improvement in Mean IoU, with
batch size 16 yielding the highest performance. No signs of overfitting were detected, and
the model remained stable across all batch sizes, indicating that varying the batch size
had minimal impact on overall performance. However, the slight increase in performance
with larger batch sizes suggests that batch size 16 may have been more effective in
stabilizing gradients during training, leading to better results.

In contrast, when using traditional normalization techniques, we observed different
performance metrics. The results when using Batch Normalization are as follows: for
Batch Size 2, the Mean IoU was 0.9673; for Batch Size 8, the Mean IoU slightly decreased
to 0.9660; and for Batch Size 16, the Mean IoU improved to 0.9729. When using Group
Normalization, the results were: for Batch Size 2, the Mean IoU was 0.9687; for Batch
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Size 8, the Mean IoU increased to 0.9724; and for Batch Size 16, the highest Mean IoU
of 0.9730 was achieved.

These results indicate that while larger batch sizes can enhance performance in some
cases, the integration of Batch Group Normalization (BGN) allows for effective train-
ing even with small batch sizes, mitigating some of the common issues associated with
traditional normalization techniques that struggle under similar conditions.

Overall, these findings illustrate how batch size affects various aspects of model train-
ing, including convergence behavior and generalization capability. The slight improve-
ments observed with larger batch sizes suggest a potential benefit in stabilizing gradients
during training. However, BGN’s effectiveness with smaller batches highlights its advan-
tage in scenarios where data availability is limited. In future work, we aim to explore
larger batch sizes of 32 and 64 to further assess their impact on model performance and
training dynamics.

5.2. Practical applications of BGN-UNet in road detection

The BGN-UNet model offers significant potential in road detection tasks across mul-
tiple domains due to its advanced segmentation capabilities and adaptability to high-
resolution imagery. This subsection explores several practical applications where BGN-
UNet could contribute to improving accuracy and efficiency, including urban road map-
ping, autonomous vehicle navigation, infrastructure monitoring, disaster response, and
traffic analysis. Each example highlights specific contexts in which BGN-UNet’s perfor-
mance may address current challenges and enhance practical outcomes.

e Urban Road Mapping

BGN-UNet can be employed to accurately map urban road networks from high-
resolution satellite or aerial imagery. Example: Similar to the C-UNet model, which
improved road extraction accuracy in remote sensing images, BGN-UNet could en-
hance urban planning and traffic management by providing precise road layouts.

e Autonomous Vehicle Navigation

In autonomous driving systems, BGN-UNet can be utilized for real-time lane and
road boundary detection. Example: A project using a UNet model for lane detec-
tion demonstrated high accuracy on diverse driving scenarios, showcasing how deep
learning models can effectively identify drivable areas under various conditions.

e Infrastructure Monitoring

BGN-UNet can assist in monitoring the condition of roads by detecting cracks and
other surface anomalies. Example: Research has shown that U-Net architectures
can be adapted for crack detection in tunnels and roads, emphasizing the model’s
capability to automate infrastructure inspections and enhance maintenance strategies.

e Disaster Response and Recovery
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After natural disasters, BGN-UNet can help assess road damage by analyzing satellite
imagery to identify blocked or damaged routes. Example: Similar methodologies have
been applied in post-disaster scenarios where rapid assessment of road conditions is
crucial for effective emergency response.
e Traffic Analysis and Management

The model can be used to analyze traffic patterns by segmenting roads from video
feeds or images captured by drones. Example: The integration of deep learning models
has shown promise in extracting road features from very-high-resolution images, which
could be adapted for real-time traffic analysis.

5.3. Challenges and considerations for practical implementation of BGN-
UNet

While our paper primarily focuses on the advantages of the BGN-UNet model compared
to traditional normalization techniques like Batch Normalization (BN) and Group Nor-
malization (GN), we acknowledge the importance of discussing the potential challenges
associated with implementing BGN-UNet in practical applications. Key considerations
include the following.
e Execution runtime
Implementing BGN can significantly extend the execution runtime during model
training compared to simpler normalization techniques. However, the improved re-
sults it yields justify the added computational cost.
¢ Memory Requirements
BGN-UNet can demand higher memory usage due to the need to maintain statistics
for multiple groups within a batch. As seen in the literature [20], larger batch sizes
need more memory for activations and gradients.
e Sensitivity to Hyperparameters
The effectiveness of BGN-UNet may depend on the careful tuning of hyperparameters,
such as the number of groups and batch size. our results demonstrate that, despite
variations in batch size, BGN-UNet consistently outperforms the other models.
e Generalization Across Domains
While BGN-UNet has shown promise in specific tasks like aerial road segmentation,
its generalizability to other domains remains an open question. While U-Net performs
well in biomedical applications [32], the integration of BGN would further enhance
its performance. Future work will explore how BGN-UNet performs across various
tasks. This investigation will help clarify the effectiveness of BGN-UNet in diverse
applications and identify potential limitations in its adaptability.
e Complexity of Implementation
Incorporating BGN into existing architectures may require more complex modifica-
tions compared to standard normalization techniques. This can be a challenge for
practitioners with limited experience in deep learning.
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In conclusion, while BGN-UNet offers notable advantages for training stability and
performance, it is essential to consider these potential challenges when implementing it in
practical scenarios. Future work could explore these aspects further, providing insights
into optimizing BGN-UNet for various applications and understanding its limitations.

6. Conclusion

Our study presents an innovative approach by incorporating Batch Group Normalization (BGN)
technique into the well-known UNet architecture for binary semantic segmentation, with a
particular focus on road detection. We evaluated the performance of BGN-UNet in comparison
to BN-UNet and GN-UNet, and our experimental results underscored the superior performance
of the BGN-UNet model. The careful preprocessing of the dataset played a significant role
in the success of this segmentation task. Integrating BGN as a custom layer in the Keras
deep learning framework allowed us to make good use of its benefits and incorporate it into
the UNet architecture. The research concluded that BGN-UNet is a valuable network for
aerial road segmentation, even in situations with limited data and constrained computational
resources. The overall outcome of our study was to enhance UNet model, offering an innovative
approach to semantic segmentation with consistently superior results. Our proposed model
experienced relatively faster convergence compared to baseline networks such as BN-UNet and
GN-UNet, easily achieving 0.984 Mean IoU benchmark within only 25 epochs of training. We
believe that further enhancements can be made to our model, not only in terms of training on
a single GPU and limiting the training to 25 epochs with a maximum batch size of 16, but
also in exploring further optimizations in hyperparameter tuning, dataset augmentation, and
potentially leveraging distributed computing resources. These steps may enhance our model’s
performance even further. While existing research has demonstrated the effectiveness of various
Convolutional Neural Networks (CNNs) for aerial image analysis, there remains a gap in the
application of advanced normalization techniques to improve segmentation accuracy specifically
for road detection. This study aims to address these gaps by introducing the enhanced U-Net
model with Batch Group Normalization (BGN). By advancing the U-Net model with Batch
Group Normalization, we not only aim to bridge existing gaps in segmentation accuracy but
also to inspire innovation and improvement in the broader field of computer vision, underscoring
the importance of continuous advancements in all domains.

BGN-UNet has performed well in aerial road segmentation, but its ability to handle other
tasks like medical image segmentation and autonomous driving is still uncertain. While U-Net
was originally designed for biomedical image segmentation, the differences in data types and
challenges in these tasks may influence the performance of BGN-UNet. However, it is expected
that BGN-UNet could enhance the capabilities of U-Net in these areas. Future research will
test BGN-UNet in these tasks to better understand its effectiveness and potential limitations
across a wider range of applications. Also, we will keep improving our model and see how well
it works with different types of datasets.
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Abstract Human iris classification remains an active research area in the fields of biometrics as well
as computer vision. In iris biometrics, most of the visible or near-infrared (NIR) eye images suffer from
multiple noise sources, and the dispersive spectrum changes hugely. These changes occur due to spat-
tering, albedo, and spectrum absorbance selectively. However, accurate iris classification for distance
images is still a challenging task. To solve it effectively, we propose a machine learning (ML)-based
iris classification employing a dense feature extraction method with various distance metrics. More
specifically, this learning model focuses on the Histogram of Oriented Gradients (HOG) descriptor and
K-Nearest Neighbour (K-NN) classifier with various distance metrics. The HOG descriptor has some
advantages for this proposed distant-based iris classification, for example, insensitive to multiple lighting
and noises, shift invariance, capacity to tolerate iris variations within the classes, etc. Additionally, this
study investigates the most reliable distance metric that is less affected by different levels of noise. A
publicly accessible CASIA-V4 distance image database is conducted for the experimental evaluation.
To evaluate the performance of the classification models, we consider different measures such as recall,
precision, Fj-score, and accuracy. The reported results are tabulated as well as optimized through
Receiver Operating Characteristic (ROC) curves. The experimental results demonstrate that the Can-
berra distance metric with low dimensional HOG features provides better recognition accuracy (90.55%)
compared to other distance metrics.

Keywords: iris classification, image gradient, Histogram of Oriented Gradient features, distance met-
rics, confusion matrix, ROC curves.

1. Introduction

Iris recognition is a cutting-edge biometric technique that recognizes or confirms the
identity of a person swiftly and efficiently by performing a set of mathematical operators
on the stored biometric characteristics. Besides, physical contact is completely absent
here to isolate iris images and analyze their patterns because this identification process
is completely non-invasive. As a result, the demands for reliable security in offline and
online authentications are constantly growing. In our networked society, biometric tech-
nologies have a variety of applications namely, ATM card authentication, e-commerce,
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banking, access control to restricted zones, border-crossing, access to control comput-
ers, database access control in distributed systems, verification of suspects in crowds at
airports and stations, identification of missing children, law enforcement activities and
so on [34]. Without specific tools or automatic machine-learning techniques, it is very
tough for a human operator to maintain high-security surveillance in these cases at a
distance.

Nowadays the security fields follow different types of technologies to verify individual
identities. Token-based and knowledge-based methods are two traditional ways of identi-
fying an individual. The knowledge-based identifiers like personal identification numbers
(PINs), usernames, and passwords can be forgotten or guessed by a third party. The
token-based identifiers, for example, driver’s licenses, passports, smart cards, ATM cards,
and identification cards may be stolen or lost [39]. Recently, several studies have demon-
strated that biometric traits are the most reliable and accurate authentication systems
than conventional knowledge-based and token-based techniques. Even if it cannot be
forgotten, stolen, or borrowed, and practically, forging is not possible. Among various
physical traits, the iris has more advantages over other fingerprints, faces, eyes, ears,
retina, DNA, palm print recognition, etc. [38]. Since iris is an externally visible inter-
nal organ that is highly protected from varied environmental conditions. It has unique
patterns for an individual that are not related to any genetic factor. Iris texture has
a high degree of randomness and individuality and remains unchanged from the age of
three through the whole life, which is observed through the clinical evidence in [16]. In
real life, there is no chance of a person having the right and left iris patterns or identical
twins, or even two human iris textures being identical [38]. The above characteristics
make it a promising biometric trait to verify and authenticate individual identities. How-
ever, this biometric technology has only been utilized in highly secure applications for
government and civil society because of real-time constraints. Though the iris is a vis-
ible biometric characteristic like an eye, face, or finger, it is not as easy to recognize as
those recognitions due to environmental conditions. The camera distances make it more
challenging to capture clear iris texture during eye image acquisition. Capturing eye
images in controlled or under less controlled conditions affects the quality of iris images
greatly because of uncontrolled light sources. Under less controlled environments, the
eye images captured at long distances with near-infrared imaging have multiple sources
of noises, for instance, partial eye images, eyelids, glasses, eyelashes, defocus blur, etc.,
as illustrated in the Fig. 1. These types of noises demote drastically the image quality,
pose difficulties in depicting distinct iris textures, and influence the further stages. In
a controlled environment, the quality of eye images is high due to capturing at a close
distance.

The previous attempts were only focused on close-distant images with controlled
environments and global feature descriptors like wavelet filters. Those descriptors cannot
extract the below-mentioned enormous iris patterns. Even, the local intensity color
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Fig. 1. Long-range eye images from CASIA-v4 database.

density, and pixel position of an image are not utilized there. While iris textures provide
high distinctiveness, freckles, wrinkles, a variety of colors, zigzag patterns, etc. [3]. In
reality, these features of various forms like textural, structural, and statistical features
are highly required to recognize an individual at a distance. This work emphasizes block-
based representation of local image contrast to overcome the limitations of wavelet filters.
Herein, image gradient characterizes the structure or shape of iris patterns using local
intensity gradient distributions and edge detection. More specially, the gradient features
pool the edge orientations into small spatial regions to retrieve both micro-structures
and macro-structures of iris patterns.

To consider the iris’s textural characteristics and imaging conditions, this paper pro-
poses a Histogram of Oriented Gradient feature descriptors to retrieve the spatial char-
acteristics strategically from the local illumination variations of an iris image. The next
stage is to explore a classifier that can recognize swiftly the iris features, which have
the lowest implications on a variety of noises as well as enhance the classification perfor-
mance. The classification stage perfect for a distance-based classifier because of being
our experimental database imbalance [21,35]. The instances of minority subjects/classes
are often sparse and scattered in imbalanced datasets and the majority subjects domi-
nate the feature space. Consequently, misclassifications may occur as a result of higher
distances between the instances of minority subjects and lower distances between the
majority subjects. To address this issue, it is urgent to investigate deeply the influ-
ence of choosing various distance metrics during the classification of a large number of
real-time images. For example, Euclidean distance is effective for numerical features
like weight, height, salary, etc., that have equal importance over the continuous feature
space. While Manhattan distance works effectively with categorical or binary feature
points like DNA sequences. Manhattan distance is less affected by outliers compared to
Euclidean distance. In this perspective, the mix of categorical and numerical features for
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each type can be handled by the K-Nearest Neighbour classifier (K-NN) with a weighted
distance metric. A perfect distance metric aids in the learning of the input iris patterns
by computing the similarity between iris images and concluding informative decisions.
The primary objective of the work is to consistently overcome existing shortcomings and
find a supervised algorithm for remote iris recognition in less constrained environments.

The following sections organize the rest of this work: Section 2 reviews a few recent
studies on the iris. Section 3 designs the architectural diagram of the iris classification
approach. Experimental settings and evaluations are done sequentially in section 4. A
statistical analysis is given graphically in section 5. Lastly, a brief conclusion is provided
in section 6.

2. Related works

This section reviews a few recent research findings that are very similar to image gradient
and distance-based iris recognition. The integrated stages of effective iris recognition are
eye image capturing, iris region segmentation, normalization, feature extraction, clas-
sification, and iris recognition. The initial stage of eye image acquisition faces various
challenges, for example, low resolution, off-axis, blur, motion, occlusion, and specular
reflections in real-time environments and degrade the further processes [26]. Special-
ized, hybrid, and deep learning methods are enlisted to address these challenges [2].
Specialized methods use prior information about iris shape like annular iris/ elliptical
shape, and dark area of the pupil. The iris trait features are identified unambiguously
in the iris image [11,15,43]. These methods are fast without training images and effec-
tive for high-quality constrained iris images but not for completely unconstrained irises.
Hybrid methods combine the specialized methods with ML algorithms to enhance iris
segmentation performance [19,32,33,42]. The ML algorithms produce coarse segmenta-
tion, and then a specialized approach is employed to generate the desired segmentation.
The hybrid method adjusts these ML algorithms relying on the training process and
the conditions of iris images. They can be more accurate due to employing iris priors
and ground truth but not fast like specialized methods. However, these approaches are
not enough to meet the challenges that arise in unconstrained iris images as still those
are heavily dependent on iris priors. Recently, deep learning methods [2,36,47], follow
semantic segmentation methods to alleviate the influence of unreliable iris priors. These
methods provide more accuracy compared to previous methods as well as do not need to
handcrafted features. Typically, they are slower due to tuning more parameters, required
large-scale training data, and high computational cost.

The earlier approaches were developed based on wavelet filters and distance metrics
for iris recognition. The drawbacks of these works are to ensure equal good-quality
eye images from constraint environments [3]. Also, the recognition performance reduces
significantly due to noisy artifacts, visible iris images, uncontrolled light sources, etc.
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Pourreza et al. [7]. noticed that most of the wavelet transforms cannot extract spatial
information practically and introduced contourlet transform to address such issues.

Tan and Kumar devised several approaches in [22,23,43,44] to deal with the existing
problems for both visible and near-infrared imaging. Among them, the integration of in-
tegrating fragile bit [18] and weight map methods [12] through a weighted sum technique
obtained the highest accuracy of 93.8% on the CASIA-V4 distance database.

Li et al. provided a weighted histogram of co-occurrence phases to extract the charac-
teristics of local iris texture [25]. Bhattacharyya distance matched these distinctive and
insensitive phase histograms with varying levels of illumination and noises. To overcome
the challenge of matching low-resolution probe iris images with high-resolution enrolled
iris images, Liu et al. developed a metric learning system [27]. The process has been
carried out by learning the Mahalanobis distance and measuring appropriate pairwise
similarities on the training set to minimize the divergence between the learned matching
results and ideal matching outcomes.

The above-mentioned methods lost distinctive information on iris images due to en-
vironmental challenges and iris texture deformation. Ali et al. modified the contrast-
limited adaptive histogram to alleviate the loss of information that helps to retrieve
informative characteristics with speeded-up robust feature descriptor [4]. The proposed
SURF-based algorithm achieved 99% and 99.5% recognition accuracy for left and right
irises respectively using the CASIA-V4 distance database. Additionally, they noticed
that fusion rule selection influences the classification performance at a certain level. The
prior wavelet descriptor cannot account for singularities along lines or curves. To capture
two-dimensional singularities, Ali et al. designed a feature-level fusion that concatenates
the gradient, contourlet, Log-Gabor wavelet, and deep features with equal dimension [5].
The simple feature concatenation shows robustness against different physical challenges.
To get over the drawbacks of wavelet and contourlet transforms, Ali et al. developed
the Log-Gabor wavelet-based contourlet transform [6]. The merged descriptor extracts
the edge and texture information in a variety of directions more compactly than the
Log-Gabor or contourlet transform. The concept of remote iris recognition was first
presented by Fancourt et al. for high surveillance. The eye images were captured at
a 10-meter distance from the acquisition device and obtained an accuracy of 95-100%
taking only 50 iris images [14]. Umer et al. retrieved the coarse and spatial properties
of iris texture patterns efficiently using textural edges descriptors [46]. The recognition
rate of the linear support vector machine (SVM) was 95% with k-fold cross-validation
on the UBIRIS.v1 dataset.

Most of the feature-level fusions cannot integrate the discriminative iris patterns
efficaciously with optimizing fused features of multimodal approaches due to a lack of
homogeneity, adaption, and flexibility. To address these problems, Zhang et al. adopted
an adaptive weighted sum method to concatenate the periocular and iris features for
enhancing recognition performance [48]. In real-life situations, it is automatically learned
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by neural networks to find out the optimum weights of iris-periocular fusion. Severo et
al. proposed an approach that can encompass the iris region as the delimitation of the
smallest squared bounding box [40]. This approach retrieves firstly multi-scale features
of the iris and then a multi-SVM classifier utilizes the concatenation of HOG and cell
mean intensity features. Recently, a few authors have focused on different types of
Fourier transform (FT) for enhancement, analysis, restoration, and compression. FT
decomposed the iris image into its sine and cosine components, which are considered
as features. The authors in [17] evaluate the effects of applying principal component
analysis (PCA) on FT except for accurate iris segmentation and feature properties using
three distance metrics. Among the distance metrics, Manhattan distance achieved the
highest accuracies of 96% and 94% for FT and PCA approaches using only 300 iris
images of 50 persons from the CASIA-v1.0 database [2018].

Tarhouni et al. integrated the Fourier histograms of uniform local binary patterns
(LBP) and pyramid histograms of gradient magnitudes through PCA [13]. The experi-
ments show a promising result for challenging the CASIA-v4 database by mitigating the
effects of the noisy artifacts from multiple sources like reflections, illumination variations,
obstacles, and so on. Szymkowski adopted discrete fast F'T components selected by PCA
to describe iris texture [41]. The database was composed of 510 iris images from CASTA-
IrisV4 and the reported average accuracies were 82.8% for K-NN, 86.6% for SVM, and
78.7% for ANN classifiers. The drawbacks of all the Fourier transforms are sensitivity to
noise, boundary effects, and computationally intensive, especially for multi-dimensional
images, which lead to retrieving inaccurate iris features. Arnab et al. introduced the
local adaptive threshold method and k means clustering based color image segmenta-
tion to consider background clutter, changes in scale, partial occlusions, illumination,
and color variation, which are common phenomenons for distant images [20,28]. The
author also developed a human identification scheme using an oriented autocorrelation
feature descriptor and correlation distance classifier. The method performs effectively
for distant captured iris images with losing shift-invariance but shows robustness against
various noisy artifacts, rotation, occlusion, and illumination variation challenges [31].

As discussed above, remote iris classification is still very challenging for visible and
near-infrared imaging at a distance in the fields of biometrics. The aim of combining
HOG and K-NN with various distances is to find an appropriate balance that can over-
come those shortcomings. Hope, this work contributes to selecting the perfect distance
metric for further studies depending on the specific characteristics of data points, espe-
cially distance-based algorithms. This work is motivated by the computational simplicity
of HOG descriptor [10], the robustness of various distance metrics in [29,31], and the
gradient strengthens against local illumination changes, etc.
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Fig. 2. The proposed architectural framework.

3. Methodology

This section provides a summary of the suggested machine learning algorithm, which
integrates the HOG and distance classifier. Firstly, a reflection removal technique, a
single-scale retinex algorithm is adopted to suppress the influence of different reflections.
Secondly, the annular iris is separated using a random walker scheme from an eye image
with low computational complexity. Thirdly, the segmented iris image is remapped by
Daugman’s rubber sheet model into a fixed dimension i.e., iris normalization to make a
direct comparison between the iris images. Then, the images are sent to the automated
HOG descriptor to extract distinctive iris patterns as feature vectors. Finally, the recog-
nition accuracy is attained using the extracted feature vectors as input to the distance
classifier. In the training phase, the model learns to train from the training images, and
its performance is measured in the testing phase using test images. The architectural
framework depicts the iris recognition system consecutively in Fig. 2.

3.1. Image pre-processing

Non-uniform illumination is a familiar phenomenon for distantly acquired eye images
in real environments caused by uncontrolled light sources and multiple sources of noise.
These certain noises create obstacles to separate accurate iris from the eye images. So,
iris image pre-processing is required to address these issues. We adopt a single-scale
retinex algorithm to improve image quality through high dynamic range compression [42].
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Mathematically, the algorithm can be expressed as the following equation.

o Im(p, q)
=18 G () @

Here, Im(p, q) is a grey scale eye image, G (p,q) = C exp|—(p* + ¢?)/7?] is a Gaussian
kernel ,“x” denotes the convolution operator and 7 = 1.5 refers to the standard deviation.

RIm (p7 q)

3.2. Iris segmentation

Iris segmentation refers to the scheme of iris localization and separation automatically
from the eye images. Due to poor segmentation, the feature descriptor fails to extract
iris textures from the less discriminative regions which leads to incorrect iris recognition.
The further stages such as feature extraction, classification, and recognition intricately
rely on the quality of iris segmentation. To consider those issues, a graph theory-based
random walker algorithm is employed to obtain the coarsely segmented binary iris masks
in this work. The binary iris masks from the coarse iris segmentation are utilized to know
detailed information about the estimation of iris center. The initial center of the iris and
pupil is fixed using both the iris image and the corresponding binary mask. After that,
the flash-points of papillary and limbic are approximately located with the help of a
circular model. The iris segmentation stage is finished after eliminating occlusion noises.
To understand more about the random walker segmentation algorithm deeply, the work
in [6,43] might be seen at a glance.

3.3. Iris normalization

The size and shape of the irises may change due to varying imaging distances and rotation
of the acquisition device or eye. Illumination variation is also the cause of iris contraction
or dilation. So, it is more conducive to removing the dimensional inconsistencies for
matching two irises. Once a segment iris image is obtained, we follow the most commonly
used Daugman’s rubber sheet model to make up elastic deformation of iris textures [11].
It is performed by re-mapping every pixel Im(p, q) of the iris region from raw cartesian
coordinates (p, ¢) to a pairwise non-concentric polar coordinates (r,0) i.e., r € [0,1] and
6 € [0,2r]. Mathematically, the re-mapping process may be expressed as:

Im(p(r, 6),q(r,0)) — Im(r,0)

p(r,0) = (1 —7)ppu(0)rpup(0) (2)

qa(r,0) = (1 = r)gpu(0)rasp(6)
where Im(p, q) represents the intensity value of the iris region image at each point (p, q).
The parameters p(r,8) and g(r,6) denote the co-ordinates of pupil (ppu(6), ¢gpu(d)) and
iris boundary points (pp(0), gop(6)) along the 6 direction. The outcomes of noise removal
from eye images, iris separation, and normalization are illustrated sequentially in Fig. 3.
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Fig. 3. Iris image pre-processing flow chart.

3.4. Gradient feature extraction

The researchers of INRIA (French National Institute for Research in Computer Sci-
ence and Automation), Dalal, and Triggs devised the Histograms of Oriented Gradients
feature descriptor [10]. This descriptor has been derived from scale-invariant feature
transforms, and also parallels edge orientation histograms as well as shape contexts.
The details of local object shape and appearance by capturing the edge or gradient
structure using regional intensity variations are the primary purpose of this descriptor.
Practically, this is done by splitting the localized image into blocks (grid) and each block
is subdivided into smaller connected cells. All the locally oriented gradients within the
cell are reshaped into a cell histogram. The cell histograms must be locally normalized
within a block to account for the variations in illumination and contrast.

In addition, it does not change with photometric and geometric transformations
because of local cell operation. The HOG feature scheme follows the steps in a local
portion of an image to count the occurrences of oriented gradients.

Step 1: Gradient computation

In an image, the gradient strengths and orientations rely on the local properties of each
pixel i.e., directional sub-divided color or intensity. The gradient values are computed
along the vertical and horizontal directions by convolving the input image Im(p, ¢) with
1D centered point discrete derivative masks D, =[1 0 —1] and D, = [1 0 —1]T. If the
horizontal and vertical gradients are G, (p, ¢) = Im(p, q)*D,, and G4(p, ¢) = Im(p, q)*Dy,
respectively, the gradient magnitude Mg and orientation 64 will be computed at the
point(p, q) as follows:

Mo(p.q) = 1/ (Gy(0.0))* + (Gy(p. )2 (3)

0 = tan= (G (p, 0)/Cy(p, ) = tan~" (aG ”) .

—-— 4
2a’ op (4)
Step 2: Orientation binning

The cell histogram is to be constituted in step 2. The 1D histogram is constructed
by reshaping the local gradient orientations over the pixels of a cell into angular bins
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(ranging from 0 to 360°). The local orientations are assigned to the nearest bins by
voting weights for each pixel over the local spatial region, i.e., a cell. Then, the gradient
orientations of all pixels Im(p, ¢) in a cell a are distributed into N bins. The gradient
magnitudes with a gradient angle of Af degree are accumulated in the respective bin Ay,
which denotes the heights of the bins. Finally, the discretization of orientations into N
bins each of A# degrees constructs the 1D histogram H; as follows:

Hy=[h]y = Y Ma(p,q)ifc(p,q) € A0, (5)
Im(p,q)Ea

where Af = 360°/N.

Step 3: Block descriptor
Step 3 requires grouping the cell histograms into larger spatial connected blocks Fj.

Step 4: Block normalization

The cell histograms are to be locally normalized within a block for counting the variations
in illumination, and contrast [10]. As each block is composed of a group of cells, a cell
may be contained in various block normalizations for the overlapping block.

Step 5: Concatenation of histogram features

Finally, the histogram of oriented feature vectors ®} is constituted by integrating cell
histograms across from all the normalized blocks in a sliding window, which represents
a one-dimensional array of histograms.

To obtain fixed feature dimensions, the input images must be resized with 64 x 64
pixels. The size of blocks is set to 2 x 2 cells and every single cell consists of 8 x 8 pixels.
9 orientation bins between —180° and +180° (signed gradients) are used to construct
histogram bins so that the HOG features can be organized sequentially according to
their properties. A total of 49 blocks is computed for an image with 64 x 64 pixels. The
final HOG feature descriptor is formulated as follows:

Y= [Fl,FQ,....,Fi,....Fg(;], (6)

where ¥ denotes the HOG feature descriptor, and Fj; is the normalized block vector in ith
block. Every block has four cell histograms with nine bins, F; = [hy;, k2, ., hi j, .-h36.i],
where h; j is the jth normalized value of ith block. The flow diagram of the HOG feature
extraction is given systematically in Fig. 4.

3.5. K-Nearest Neighbour classification

K-Nearest Neighbour (K-NN) is a distance-based supervised machine learning algorithm
that performs pattern recognition tasks for classifying objects based on various features.
It ensures better performance in bio-informatics, data mining, and image classification
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Fig. 4. The flow diagram of HOG feature extraction.

when the features are labeled prior with low dimensionality as well as scaled in equal
weight. The main advantage over the other classifiers is that there’s no need for pre-
training, the model does not learn in the training phase, even needs not to tune more
parameters. It also assumes that similar things exist nearby and classifies the test iris
images based on the similarity measure of prior stored feature vectors. To supervise the
HOG model for such properties, the K-NN algorithm compels us to follow instead of the
other classification methods. Besides, K-NN functions as an outlier detector by locating
feature points that have few or no neighbours within a fixed radius.

The review section 2 shows that the Euclidean and Hamming distances are used
widely in classification problems but in most of the cases, accurate predictions de-
pend on feature properties, distance metrics, and so on. The following metrics are
utilized to compare and measure the distances between test and training images [29]
as there is no comparative study of distance metrics. Let p = (p1,p2, p3, ------ ,Pn) and
q = (q1,92,q3, .- ,qn) € R™ be the two feature vectors in n-dimensional space. The
distance measure between p and ¢ vectors may be defined as

Euclidean distance (Eucl) It is a straight line distance, which represents the sum of
the squared differences of two attribute vectors by taking the square root.

DEud(pa q) =
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where p; is the jth component in the vector p and ¢; is the jth component in the
vector q.

Sokalmichener distance (Soka) The distance computes the Sokal-Michener dissim-
ilarity between Boolean 1D arrays p and gq. The Boolean array p is a sequence of
numerics that consists of 0 (false) and 1 (true) and has no intermediate values. The
Boolean 1D arrays with a threshold value and Sokalmichener distance are defined as

{1 if p; >0.1667, ®)
~ 0 if p; <0.1667,

2(m10 + m01) (9)
ma1 +moo + 2(mio +mo1) |
Here, mg, counts the number of occurrences of p; = = and ¢; = y for j < n, and
n defines the total number of points in a feature vector p.
Yule distance (Yule) Yule distance is a measure of dissimilarity between two proba-
bility distributions based on their overlap. The Yule dissimilarity is defined as

Dsoka(p, q) =

2my9mo1

Dyue(p,q) = (10)

m11moo + M10Mo1

Jaccard distance (Jacc) It is a statistical metric that is generated from the Jaccard
index and measures the diversity of iris patterns. The Jaccard dissimilarity between
boolean 1D arrays p and ¢ is defined as
mio + Mo1

mi1 +mig + mor

DJacc(p7 Q) = (11)

Dice distance (Dice) The distance is close to the Jaccard index which measures the
dissimilarity of two patterns. The Dice dissimilarity between p and ¢ iris vectors is

mio + Mo1
2my1 + mio + mor

Dche(pv Q) (12)

Bray-Curtis distance (Bray) The Braycurtis distance is the absolute differences be-
tween two attribute vectors with taking the summation, which differences are divided
by their summed attribute values.

Doy (p.) > =1 lpi — 4l

Bra ) = .
- 21 Il + 5 lasl
Canberra distance (Canb) It is an extension of Ly distance that includes weights

and measures the dissimilarity of ranked lists. The sum of absolute differences is
divided by their summation between a pair of points over a vector space.

(13)

|pJ j
DCanb b,q 14
Z |pj|+|qj (14
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Manhattan distance (Manh) It is the sum of absolute differences of two opposite
attributes over the normed vector space. It is most preferable for high dimensionality
and provides more reliable results due to the absolute value of distance.

Dtann(ps g Zng il (15)

Cosine distance (Cosi) This distance measures the angle between two vectors of in-
ner product space with magnitude and is computed from one minus the cosine of the
included angle between two attribute vectors.

) —1— Z] 1 P45
\/Z] 1 i ] o1 452

where p; is the jth value in the vector p and g; is the jth value in the vector g.

DCosi(pv (16)

Correlation distance (Corr) Between two feature vectors, the linear relationship is
measured in this case by subtracting Pearson’s correlation coefficient from one.

)=1- Z] (2 = D) (g5 — )
NS SR

DCorr(pa (17)

where p is the mean of a feature vector p, i.e., p = % E;-lzl p; and p is the mean of a
feature vector g, i.e., 7=+ D195

4. Database and experimental setup

In this section, a publicly accessible database of remotely captured face images, CASIA-
v4 is employed to conduct all of the experiments. The Chinese Academy of Science’s
Institute of Automation (CASIA), Beijing, China has provided the database to explore
iris-based biometric recognition [45]. The facial images are acquired remotely with the
help of near-infrared cameras. The distance is three meters away from the subjects under
less controlled environments. The full database comprises 142 subjects including 2567
facial images. First, all right and left eyes were separated from the face images and
a total of 5134 eye images were obtained. After that, the imbalanced eye images are
categorized into 142 subjects i.e., each subject has not an equal number of images, and
most of the subjects include regular-irregular images. From the facial images, all the
images of the eye cannot locate or isolate exactly owing to having obstruction of glasses
and occlusion of eyelids or eyelashes. We only use the regular iris images of the first
14 subjects for parameter tuning and explore that Canberra distance performs the best.
Further experiments are conducted using this distance metric. We selected randomly
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3233 images as training data from each of the subjects 15-142 to learn the classification
model. Similarly, we select 742 images to evaluate the performance of the model as
testing data. All the experiments are conducted by dint of Python 3.7 and MATLAB
R2018a (Intel Core i5).

K-NN classifier treats all features equally by default to contribute to the distance
calculations. Otherwise, the distance measurement will be dominated by the larger fea-
ture points if they are on different scales and ranges. Min-max normalization helps to
address this issue without distorting the larger differences of those features. Addition-
ally, weighted distances assign higher weights to privilege the important features. The
histogram-oriented gradient features V' including training and test features from (6) are
normalized with the help of the following equation.

V= (1‘9] - ﬁmin)/(ﬁmam - ﬁmm) s (18)

where 9; denotes the 4t value of feature vector ¥ with maximum value 9,4, and mini-
mum value 9,,;,. Challenges such as data sparsity, distance loss of meaning, overfitting,
and increased computation cost arise in high dimensional spaces. Therefore, it is more
convenient to lessen the dimensionality of HOG features using PCA without loss of use-
ful information. For this purpose, the PCA transform matrix is obtained from training
features and then utilized in test features. These low dimensional, labeled, and scaling
features help to train the K-NN model effectively, otherwise affect the majority voting
in classification.

4.1. Performance measure

The effectiveness of a classification model may be measured using a variety of assessment
indicators. The most often used confusion matrix is utilized to determine the model’s
accuracy and correctness. Accuracy measures the effectiveness of the classifier by its
percentage of samples classified accurately. Classification accuracy is defined by

Number of accurate classified samples

Accuracy = (19)

Number of all samples

The evaluation systems are designed by calculating the following measures to assess
the recognition performance within each class of the database.

(i) True positives (tp): number of positive (p) predictions that are true (t).
(ii) True negatives (tn): number of negative (n) predictions that are true (t).
(iii) False positives (fp): number of positive (p) predictions that are false ().
(iv) False negatives (fn): number of negative (n) predictions that are false (f).
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Tab. 1. Performance measurement for each distance metric.

Distance Metrics Avg. Precision Avg. Recall Fj-measure Accuracy (%)
Euclidean distance 0.7931 0.7647 0.7543 75.70
Sokalmichener distance 0.8452 0.8311 0.8193 82.32
Braycurtis distance 0.8772 0.8535 0.8483 85.02
Canberra distance 0.9190 0.9102 0.9053 90.55
Manhattan distance 0.8564 0.8333 0.8262 82.86
Yule distance 0.8622 0.8397 0.8309 83.53
Jaccard distance 0.8508 0.8363 0.8250 83.13
Dice distance 0.8508 0.8363 0.8250 83.13
Cosine distance 0.7951 0.7623 0.7519 75.70
Correlation distance 0.7966 0.7605 0.7505 75.70

The average precision, recall, and Fj-measure values and accuracy of a multi-class clas-
sification system are defined by

N,
Average Precision = E

20
i, + fp] (20)

NC
tpj

Average Recall = _—
verag N — tp; + fn;’

(21)

2 x Precision x Recall
Fy- = 22
1-measure Precision + Recall ' (22)

tpj + tnj
Accuracy = — E )
N, o tpy + oy fp; + fn;

(23)

where N, is the number of classes; tp;, fn;, fp; and tn; are the number of true positive,
false negative, false positive, and true negative classifications for class j, respectively.
The confusion matrix helps to derive these performance measures, which are illustrated
graphically in both predicted and actual classification [30] corresponding to their sub-
jects or classes. The performance of dense HOG descriptor with K-NN classifier is
computed for each distance metric by measuring average precision, recall, F}-measure,
and classification accuracy as enlisted in Table 1.

We observe that Canberra distance metric provides the highest average precision
(0.9190), recall (0.9102), Fi-measure (0.9053), and overall classification accuracy (90.55%)
among the 10 distance metrics from the Table 1 in case of using HOG features. It is
visible from Fig. 5 that the iris feature vector consists of several criteria such as bi-
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Fig. 5. The HOG feature distribution.

nary features — has any iris shape or not; ordered categorical features — iris shape very
densely/iris shape moderately densely/iris shape not densely; numerical features — a
measurement, like color density in dpi. Canberra Distance utilizes the criteria to rec-
ognize the test images in their subjects according to how similar or dissimilar they are
with training images. Also, the distance metric deals with mixed types of feature points
and sorts the iris features into groups that are more closely or distantly related to each
other. Due to appropriate balance, the HOG descriptor shows better performance with
the weighted Canberra distance over the other distance metrics.

In addition, we have experimented with edge orientation histograms (EOH), con-
tourlet transform (CT), and uniform gradient local binary patterns (GLBP) features
to compare the discriminatory power of HOG features utilizing the Canberra distance
metric. These experimental outcomes are enlisted in Table 2 in terms of precision, recall,
F-measure, and classification accuracy. It can be found from Table 2 that the Canberra
distance-based classification provides the highest result for HOG features compared to
the other three feature descriptors. Therefore, it is confident that the HOG descriptor
locally extracted more relevant iris textures from the complicated images due to the
orientation of the iris image gradient.

4.2. Performance study

This sub-section depicts the performances of feature descriptor as well as the impacts
of various parameter selection for optimal classification. The Receiver Operating Char-
acteristic (ROC) curves are plotted concerning false positive rate and true positive rate
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Tab. 2. Efficacy of HOG with other feature descriptors.

Feature Descriptors  Avg. Precision Avg. Recall Fj-measure Accuracy (%)

EOH 0.7129 0.6175 0.6132 61.40
CcT 0.7444 0.7107 0.6880 69.63
GLBP 0.8249 0.7818 0.7709 77.32
HOG 0.9190 0.9102 0.9053 90.55
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Fig. 6. True versus false positive rates for (a) gradient operators; (b) orientation bins.

with the help of classification threshold values. The performance is indicated by the
closed curve to the top-left corner. The study explains the influence of HOG descriptor
with the help of ROC curves graphically and confusion matrix from Fig. 6a to Fig. 8a,
and obtain the optimal parameters to extract the gradient features like as 64 x 64 pixels
sliding window, one-dimensional derivative masks [1 0 — 1]; 9 orientation bins between
—180° and +180° (signed gradients); 2 x 2 pixel blocks of four 8 x 8 pixel cells and
L1-sqrt normalization scheme respectively. The effects of chosen distances are shown
not only graphically Figs. 8b, 9a but also numerically in Tables 1, 2.

Gradient computation

Image gradient computation is the first step of retrieving gradient features. Roberts,
1D centered derivatives [1 0 — 1], Sobel and Prewitt operators are followed to compute
image gradient. The one-dimensional derivatives perform best among those operators
with the lowest computational cost. The 3 x 3 Prewitt and Sobel masks reduce the
classification performance by around 4% and 5% compared to 1D derivatives. Whereas,
the centered 2D derivative masks i.e., 2 X 2 diagonal Roberts’s filter slightly improves
the performance by 2% than 3 x 3 derivative masks. The performances are reduced
significantly in Fig. 6a with increasing the size of derivative masks.
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Fig. 7. (a) Misclassification rates. (b) True versus false positive rates for block normalization.

Orientation binning

In the next step, we compute the weighted votes for every pixel to form a histogram based
on the oriented vector of iris texture patterns. Then, the computed votes are gathered
into orientation bins as cells from the local spatial regions. Regarding rectangular cells,
the orientation values of the gradient are evenly spaced in bins between 0° and +180°
(unsigned gradients) or between —180° and +180° (signed gradients). The orientation
bins of the gradient can be allocated into several bins. The number of orientation bins
changes from 8 bins to 10 bins to visualize their performances and the signed gradients
of 9 bins perform better among them as shown in Fig. 6b.

Blocks descriptor

The variations of gradient strength occur extensively due to illumination changes and
local contrast. So, it is more convenient to find an effective local contrast normalization
that contributes to integrating all the cells into larger spatial blocks. Each block normal-
izes the local contrast individually. We use square R-HOG blocks, which are formulated
by ¢ x ( cells per block with a x « pixels per cell and each cell consists of 3 orientation
bins per cell histogram with the (, o, f parameters.

A 3D bar graph is plotted to visualize the misclassification rate for cell size and block
size in cells in Fig. 7a. The variation of block sizes is shown with the help of different
colors. The 2 x 2 cell blocks of 8 x 8 pixel cells work best with a 9.45% misclassification
rate among the block descriptors. The 1x1, 3x3 and 4 x4 blocks with their corresponding

cells 6 x 6, 8 x 8 perform also good but decrease performance around 1% compared to
2 x 2 blocks.

Block normalization

The block normalization techniques are adopted for better invariance to illumination
and shadowing. If ¥ is the non-normalized feature vector that holds all the histogram
of orientations in a block, the normalization schemes |||, are defined as (a) Lo-norm is
the square root of the sum of squared values, i.e., [|[9|[p=2 = (3°}_, 19?)1/2 and Lo-norm:
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Fig. 8. True versus false positive rates for (a) sliding windows; (b) number of neighbours K.

v—=9/(||9]]2+¢€); (b) Le-Hys: v — 9/(||¥]]2 +€), ¥ <0.2; (c) Li-norm is the sum
of absolute values i.e., [[9|[p=1 = >27_;[9;] and Li-norm: v — 9/(||[9||s + ¢) and (d)
Li-sqrt: v — ¥/4/||9]|1 + €. Figure 7b shows that Li-sqrt and Le-norm provide almost
similar performance but Lo-norm reduces performance by 0.27%. Whereas, L; — sqrt
increases performance significantly by 1.76% and 1.08% than the Lo-Hys and Ls-norms.
Extensive experiments are carried out to measure the optimal value of £ over a wide
range and conclude that there are no more effects of the constant € on overall results.

Sliding window

The variations of sliding windows pose difficulties in the feature extraction stage and
influence the classification results greatly as the computational simplicity relies on sliding
windows at large. Figure 8a reports that the performances of sliding window increase up
to about 64 x 64 pixels but decrease performance with 72 x 72 pixels window. Among
them, a window of 64 x 64 pixels produces a substantial amount of context to recognize
iris patterns. The other sliding windows are seen the same on the ROC curves but their
evaluation matrices are different. The sliding window 32 x 32, 48 x 48, 56 x 56 and
72 x 72 pixels reduces performance 7.42%, 1.35%, 1.49% and 0.27% respectively on the
recognition accuracy due to a lack of sufficient contextual information.

Number of K neighbours

The K parameter refers to the number of nearest neighbours to be considered while
making the prediction. This affects the sensitivity of the algorithm to local patterns in
the feature space. A smaller K leads to low bias but increases the impact of outliers with
complexity and makes the model more prone to overfitting. Whereas, the model arises
with less complexity with a larger K, which assists in avoiding overfitting but ignores
potential local patterns. The odd number of K defines always a majority class that helps
to decide the predicted class. It is clear from Fig. 8b that the 3 nearest neighbours
show better performance with the highest value by avoiding ties in voting. The figures
of Jaccard and Dice distance overlap due to having similar properties that are assumed
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Fig. 9. True versus false positive rates for (a) distance metrics; (b) feature descriptors.

from the measurements in Table 1. It is also visible that there is no optimal value of
K, which performs equally well for all the distances. Fig. 8b ensures that the choice of
distance metric affects the classification performance significantly but not the selection
of the right K in K-NN.

Distance metrics

In this study, the above-mentioned distance metrics are employed to investigate, which
distance is less affected by the noise implications. We obtain the optimal performance
with the highest outcome (90.55%), while the Canberra distance is applied to train the
model instead of mostly using Euclidean and Hamming distance metrics.

The K-NN classifier with Euclidean, Cosine, and Correlation distances reduces per-
formance by around 15% compared to Canberra distance. Although the accuracies of
Jaccard and Dice distances are almost the same, the recognition performance is different
as shown in Fig. 9a. Seemingly, the Yule distance shows poor performance on ROC
curves but its accuracy is so much better than Manhattan, Sokalmichener, and Jaccard
distances in Table 1. The comparative study suggests that Canberra distance may be
an effective metric for gradient feature classification with the highest possible accuracy.

Feature descriptors

A feature descriptor is an algorithm that extracts only the most informative features of an
object in terms of a set of numbers. We compare the performance of the dense descriptor
HOG with EOH, CT, and GLBP feature descriptors using the Canberra distance-based
classifier. These descriptors focus on the shape or structure of iris patterns as they utilize
the magnitude and orientations of the gradient to extract features. They provide several
computation costs because of extracting various feature properties and measuring the
distance between the feature points. Among these descriptors, the HOG feature-based
technique classifies the iris images more swiftly than others. The EOH descriptor reduces
performance by around 19% consuming huge run time. It is visible from Fig. 9b that
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Fig. 10. (a) Plot of K-NN learning curves using HOG features. (b) Subject-based precision-recall curves.

there is a scarcity of threshold points to make the ROC curve smoother because of the
imbalance of subjects in training and test sets.

5. Statistical analysis

We assess the performance of the HOG feature descriptor by dint of learning curves and
precision-recall curves for every subject concerning their values that are accomplished
by the K-NN classifier with Canberra distance. The learning curves show the robustness
of the model as well as the scope of using a large number of images in real-life applica-
tions. The precision-recall curves interpret the types of noisy images and illustrate the
complexity of images within each subject of a database.

In this study, the learning curves diagnose the model’s learning and generalization
behavior to make a marginal decision. The above yellow and blue learning curves are
plotted by using the Canberra distance-based K-NN classifier with the histogram of
oriented features. The test score (yellow curve) shows how well the model fits new data,
whereas the training score (blue curve) shows how well the model fits the training set. In
the beginning, the large gap between the training and test performance shows that the
model is under-fitting, which is probably due to the small size of images and database
from different distributions. With the increasing of training images, the curves are going
to converse a satisfactory score as shown in Fig. 10a. The training scores are enhanced
through the iterations of up to 50 percent of training images. After that, those scores are
constant and the HOG model fails to obtain 100% accuracy in the training phase while
the test scores are increasing and converse to the highest possible score in the end. The
learning curves demonstrate that the testing scores could be made better by increasing
training images and making the dataset balanced.

Figure 10b plots the precision and recall curves for each subject concerning precision
and recall values. The blue color is used for the precision curve, while the red color is
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Tab. 3. Performance evaluation with existing cutting-edge approach

Proposed Approaches Accuracy
Symlet wavelet filter and Spearman distance [29] 80.00%
Principal Component Analysis and Braycurtis distance [37] 80.00%
Level set and local binary pattern with Manhattan distance [9] 81.45%
Discrete fast Fourier transform and Braycurtis distance [41] 82.80%
Radon Transform and Euclidean distance [8] 84.17%
Uniform LBP and Euclidean distance [24] 84.77%
LBP and Euclidean distance [38] 84.88%
GLCM and Euclidean distance [1] 85.00%
CNN feature descriptor and Euclidean distance [5] 86.94%
Contourlet Transform and Hamming distance [7] 88.00%

Histogram of Oriented Gradients and Canberra distance — Proposed  90.55%

used for the recall curve. We can see that 51 subjects in precision curves and 48 subjects
in recall curves cannot attain the maximum values due to having a variety of obstacles
such as eyelids, eyelashes, illumination, and internal eye variations in these subjects. The
images of 46 subjects within 128 subjects and 672 images among the 742 test images
are classified accurately, while 70 images of the rest subjects are not recognized by their
corresponding subjects. For example, the 18th and 29th subjects have the lowest recall
value of (0.50) and the 17th subject has the lowest precision value of (0.50), indicating
that some but not all of the subjects’ test images are recognized. In practice, the images
of these 82 subjects are imbalanced and contain several noises during the acquisition
process, which impede an illustration of clear iris textures. For weak segmentation of
irises, the HOG descriptor cannot retrieve relevant features and learn robustly from
those iris textures. Thus, the K-NN model fails to classify the complicated iris images
accurately and does not obtain overall 100% recognition accuracy. The performance
scores of the Fj-measure are overlapping, which indicates that the feature distributions
are irregular in these subjects. In the other subjects, the high success rates of evaluation
metrics show that the models are successful in iris image classification.

Table 3 provides a comparison with earlier approaches including the reported results.
Few of these techniques examined the performance of classification on various types of
databases with various numbers of training and test images. For instance, Tan and
Kumar only performed their experiments using the first 8 right or left eye images from
the CASIA-v4 distance database [45]. The overall recognition accuracy was 93.90%
employing training images from the first 10 subjects and test images from subjects 11-
141. The recognition rate of Chan method was 90.43% considering 79 training images
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from the 10 subjects and 961 test images from the remaining 131 subjects from the
proposed database [23].

It is remarkably worthy that the authors in [5] reported several efficiencies in adopting
multi-feature descriptors. The accuracy of 98.17% is the highest among the outcomes,
however, their performances are not explicitly comparable to our work. Because the
authors not only considered iris images but also included contextual eye images having
pupil, eyelash, eyelid, sclera, and so on. Therefore, the experimental results of the
proposed framework would not be feasible to make a comparison with other experimental
outcomes directly. We employ 3975 images including 3 233 images for training and 742
images for testing; and also do not consider the regular eye images of the first 14 subjects.
It is clear from Fig. 1 that our experimental database consists of more complicated and
non-linear images than others.

However, the supervised approach is better as compared to existing methods concern-
ing near-infrared distance iris images having various illumination conditions and multiple
sources of noise. Also, accurate iris segmentation, informative features with lower di-
mensionality, distance metric of lowest noise implications, and computational simplicity
can be considered measurable parameters of good classification performance. Finally,
the comparative studies validate that the Canberra distance metric may be applied in
the lieu of most widely used Euclidean or Hamming distance metric for noisy datasets
and distance-based approaches.

6. Conclusion and future work

This paper has introduced an image gradient and distance-based machine learning algo-
rithm for remote iris recognition. The HOG descriptor captures intuitively the shape of
structures in the region by capturing information about gradients. The discriminative
power of HOG is to extract successively both microstructures and macro structures of iris
patterns from the local contrast and illumination variations. To classify the imbalanced
iris images, a weighted distance classifier is needed to explore which is less affected by
different levels of noise. Like other classifiers, K-NN is prone to become biased towards
the majority of instances of training features but can be handled effectively with the help
of weighted Canberra distance. The distance metric emphasizes the larger differences
between the iris features and outliers and is more robust to outliers than other distance
metrics. The experimental evaluation demonstrates that Canberra distance provides the
highest possible classification accuracy (90.55%) with the lowest noise implications.
The combination of HOG and K-NN classifier shows its robustness against local
contrast, illumination changes, and occlusions. It is regarded as one of the most influ-
ential machine learning algorithms because all the parameters are intricately connected.
Though the HOG descriptor extracts the iris features efficiently while retaining robust-
ness to irrelevant variations resulting from environmental changes, it lost shift-invariance
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and additivity. The concept of correlation will be adopted in self-similarity to address
these issues. It will exploit the spatial and orientational auto-correlations from the local
image gradient that prioritize the closer iris patterns in its local neighbourhoods. In
the future, a proximity-weighted evidential K-NN classifier will be applied to give more
priority to the instances of minority subjects or classes.
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