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Abstract To make virtual reality human-computer games more accurate and provide users with an
immersive gaming experience, the study combines the method of improved part intensity field and part
association field (PIFPAF) with binocular vision to optimize the interaction of VR human-computer
games. The experimental results indicated that the PIFPAF algorithms performed relatively well with
number of errors and target keypoint correlation of 0.22 and 0.97, respectively. In terms of processing
speed, the algorithm performed faster in both 640×480 and 320×240 resolutions, with 13 fps and 19 fps,
respectively. Among the five predefined gestures, the “pointing” gesture was recognized correctly the
largest number of times in 30 test sessions, with 29 successful identifications. In contrast, the “clenched
fist” gesture had the fewest correct recognitions, totaling 26. The success of the suggested approach
is confirmed by the experimental findings, which show that the optimized human-computer interaction
system has high accuracy and processing speed. This study offers a fresh approach to the advancement
of human-computer interaction technology and encourages technological integration innovation in the
realm of virtual reality human-computer gaming.

Keywords: virtual reality; PIFPAF algorithm; binocular stereo vision; keypoint detection algorithm;
dimensioning algorithm.

1. Introduction

As virtual reality (VR) technology advances quickly, it has progressively made its way
into a variety of industries, including gaming, education, healthcare, design, and more,
as a new interactive experience. The naturalness and intuitiveness of human-computer
interaction (HCI) are also the key factors to enhance user experience [5, 7]. Traditional
VR interaction methods, such as joysticks and keyboards, although satisfy users’ needs
to a certain extent, have certain limitations in simulating real-world interaction. It limits
the user’s immersion and interaction experience in the VR environment [17]. Although
some deep learning-based stereo matching methods have made progress, they still face
challenges such as high computational complexity, large hardware requirements, and
poor adaptability to dynamic scenes in real-time applications. Optimizing the network
structure, introducing lightweight models, utilizing parallel computing, and adaptive
feature extraction techniques can improve their efficiency and real-time performance.

The part intensity field and part association field (PIFPAF) algorithm, originally pro-
posed by Kreiss et al. [9], aims to solve the keypoint association problem in multi-person
pose estimation. This algorithm can more accurately detect human body structure and

Machine GRAPHICS & VISION 34(3):3–30, 2025. DOI: 10.22630/MGV.2025.34.3.1.

https://orcid.org/0009-0009-4042-4610
https://orcid.org/0009-0004-5312-7424
mailto:chenbo1565[at]163.com
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.3.1


4 Optimization of VR human-computer game interaction. . .

associate keypoints by predicting local keypoints and spatial relationships between key-
points, especially suitable for complex interactive scenes. The development of PIFPAF
is inspired by earlier work such as OpenPose, proposed by Cao et al. [3], which pioneered
bottom-up keypoint detection in multi-person pose estimation.

In current HCI technology, traditional methods have many key problems in VR inter-
action scenarios, including chaotic keypoint matching during multi-person interaction,
which leads to a decrease in tracking accuracy. In the case of occlusion, the loss of
keypoint information is severe, which affects the accuracy of recognition. The high com-
putational complexity affects real-time interaction performance. PIFPAF enhances local
feature extraction by deep neural networks and optimizes the skeleton keypoint matching
strategy, enabling it to infer the pose of the occluded part well even in occluded envi-
ronments while maintaining computational efficiency. These features make it an ideal
choice for optimizing VR HCI systems, enhancing immersive experiences and real-time
performance, and promoting the development of intelligent interaction systems. Binocu-
lar vision can provide depth information to more accurately localize the user’s body parts
in complex environments [1, 4]. Therefore, to improve the naturalness and accuracy of
VR human-computer game interaction (HCGI), this study investigates VR HCGI based
on the improved PIFPAF algorithm with binocular vision.

The innovativeness of the research lies in the improvement of the existing PIFPAF
algorithm in order to increase the accuracy and real-time performance of human pose
estimation. It also combines binocular vision technology with the improved PIFPAF
algorithm, thus proposing a new depth-aware interaction. The contribution of this re-
search is to improve the accuracy of keypoint detection and the robustness of limb
association through this algorithm. Its branch accurately locates keypoints using Gaus-
sian heat maps and establishes human skeleton connections using vector fields, which is
more resistant to occlusion compared to traditional methods. In addition, PIFPAF opti-
mized the feature extraction network, adopted an efficient ResNet backbone network, and
used adaptive scale inference to improve the ability to detect different human postures
while reducing computational redundancy. These enhancements significantly improve
real-time performance and enable efficient and accurate pose estimation in complex in-
teractive scenarios, resulting in a smoother and more intuitive interactive experience.

The research will be carried out in four sections. The Section 2 is a review of the cur-
rent research status of binocular vision and VR HCI. The Section 3 is the optimization
study of human keypoint detection and HCI system. The Section 4 contains the exper-
imental analysis of the research algorithms and system performance. In the Section 5
the results of experiments with the methodology proposed in this paper are discussed.
The last Section 6 is a summary of the research.
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2. Related works

With the advancement of computer graphics and HCI technology, VR technology has
gradually matured, providing users with unprecedented immersive experiences. Opti-
mization of HCI experience is also a hot research topic at present. Lyu aimed to explore
the current state of HCI in the metaverse, and research results showed that key tech-
nologies such as 5G, blockchain, and HCI supported the development of the metaverse.
In the future, humanized somatosensory connections in HCI could become a trend [14].
Ramadoss proposed an optimized non-invasive human-machine interaction model to im-
prove the accuracy of human motion recognition in HCI. The research results showed
that this method had significant effects on human motion and target recognition, re-
ducing noise by 7.2% and improving accuracy to 97.2% [15]. Li proposed an interaction
design model that combined artificial intelligence (AI) and voice information to enhance
the HCI experience in VR environments. Research showed that this model promoted
the application and development of VR technology in multiple fields such as gaming,
fitness, and education by optimizing the HCI design [11].

Keypoint detection algorithms and stereo binocular vision can effectively detect and
track human posture and motion. Read proposed a research method that comprehen-
sively examined the use of binocular vision and stereoscopic vision in order to explore
the advantages and disadvantages of binocular vision and its mechanisms. The research
results indicated that although binocular vision reduced the overall field of view, it
enhanced obstacle avoidance and contrast sensitivity [16]. Bonnen et al. proposed a
research method that combined eye and body tracking to explore the role of binocular
vision in complex terrain walking. The research results indicated that binocular vi-
sion was crucial for locating a foothold, and its absence could systematically affect gaze
strategies, increasing perceptual uncertainty and making the gaze more inclined towards
a nearby foothold [2]. Lin et al. proposed a recognition method based on improved
ResNet and skeleton keypoints to improve the accuracy of single image human action
recognition, and constructed a multi task network. The research results showed that
this method could accurately recognize human movements under different human mo-
tion, background light, and occlusion conditions. Compared with the original network
and main recognition algorithms, it had an advantage in accuracy and balances net-
work parameters, solving the problems of large network and slow operation [12]. Zhang
proposed a method that combined efficient network structure, training strategy, and
post-processing techniques to address the challenge of human keypoint detection in a
single image. The research results indicated that this method effectively improved the
detection accuracy and outperforms the latest technology on the benchmark of keypoint
detection [20]. To improve the accuracy and practicality of the fall detection system,
Inturi proposed a new visual based fall detection scheme. The research results indicated
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6 Optimization of VR human-computer game interaction. . .

that the system could effectively detect five types of falls and six types of daily activities,
and performed well on the UP-FALL dataset [6].

VR and HCI technology have made significant progress in recent years. They generate
highly realistic 3D virtual environments through computers, allowing users to interact
with the virtual world in an immersive way. They are widely used in various fields such
as gaming, education, healthcare, and design. In the VR field, major manufacturers
have introduced several innovative devices. In 2023, Sony released the PlayStation VR2,
which featured internal and external tracking, eye tracking, a high-definition display,
and a controller with adaptive triggering and haptic feedback to enhance the gaming
experience. In 2024, Apple released the Apple Vision Pro, a fully enclosed mixed reality
headset that emphasizes video perspective functionality. Although it lacks the external
controller of traditional VR headsets, it is described as a spatial computer. In terms of
HCI, with the advancement of technologies such as computer graphics and AI, HCI is
gradually shifting from traditional keyboard- and mouse-based interaction modes to more
natural and intelligent interaction methods. For example, interaction methods based on
gesture recognition, speech recognition, eye tracking, and other technologies are gradu-
ally emerging. The integration of eye tracking technology enables the system to optimize
rendering based on the user’s point of view, improving performance and immersion. In
addition, the development of hand tracking and gesture recognition technology allows
users to interact with virtual environments in a more natural way, reducing reliance on
traditional controllers. Together, these advances are driving the evolution of VR and
HCI technologies, providing users with a more intuitive and immersive experience.

To summarize, many scholars have researched on HCI technology. Moreover, there
are more studies on the acquisition of information about human motion and posture
using binocular vision technology or human keypoint detection algorithm, and certain
results have been achieved. However, most of the scholars only use a single algorithm
model and do not improve the model’s deficiencies. Most researchers focus on action
recognition, trajectory prediction, and interactive feedback when researching VR interac-
tive technology. However, these studies have certain limitations when faced with complex
actions and multi-person interaction scenarios. First, current mainstream methods often
rely on deep learning-based motion capture or pose estimation algorithms, such as con-
volutional neural networks, recurrent neural networks, and their variants, when dealing
with complex actions. Although these methods can achieve good recognition results in
simple single-person interaction scenarios, there are bottlenecks in the recognition and
prediction of complex actions, mainly due to the difficulty of the model to accurately
capture high-speed and nonlinear motion trajectories, especially when multiple joints
are involved in coordinated motion. Existing methods have weak temporal modeling
capabilities and are difficult to accurately predict subsequent actions. Furthermore, in
multi-person interaction scenarios, traditional methods typically use data fusion based
on visual or inertial sensors to analyze user interaction behavior. However, these methods

Machine GRAPHICS & VISION 34(3):3–30, 2025. DOI: 10.22630/MGV.2025.34.3.1.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.3.1


H. Zhu, B. Chen 7

are susceptible to data noise and environmental disturbances when faced with multiple
occlusions, dynamic background changes, or synchronized interactions. This can result
in interaction delays, increased error rates in action recognition, and ultimately reducing
the immersion and real-time feedback effects of the game. On the other hand, tra-
ditional optimization algorithms typically rely on rule-based or reinforcement learning
frameworks, such as Markov decision processes and reinforcement learning, when dealing
with path planning and action generation problems in VR HCI. However, these methods
have a high computational overhead in high-dimensional state spaces, making it difficult
to respond to the complex action needs of users in real time. In addition, traditional
reinforcement learning models are unable to efficiently model the dynamic interaction
relationships between different users in multiuser collaborative interactions, making it
difficult for the system to adapt to changing interaction patterns. It can be concluded
that in response to the complexity and real-time requirements of VR HCGI scenarios,
the existing research has the limitation of balancing computational efficiency, interaction
accuracy, and real-time response capability, which has become a key challenge to further
enhance the VR interaction experience.

For the above reasons, in this research the PIFPAF algorithm is improved by com-
bining it with the enhanced binocular vision technology to locate the user in 3D, so as
to optimize the VR HCGI system.

3. Optimization of VR interpersonal game interaction

3.1. Keypoint dimensional enhancement algorithm based on improved binoc-
ular vision technique

VR technology can use computer-generated 3D images and sounds to simulate the real
sensory experience of humans [10, 22]. However, in VR human-computer games, users’
hand movements and body movements have a high degree of complexity and diversity [8].
The keypoint detection algorithm can improve the accuracy of human motion detection
in VR games by accurately locating human joints. These algorithms can capture player
poses in real time, reducing errors caused by occlusion or complex movements, making
interactions smoother. Combined with deep learning models, keypoint detection can
optimize limb tracking, enabling the system to more accurately understand the player’s
intent. It can also improve the accuracy of physical feedback, improve action matching,
avoid delays, enhance immersion, and provide strong technical support for motion inter-
action and prediction in VR games. Based on this, the study adopts the human body
keypoint detection algorithm for keypoint positioning of human body images. When
designing keypoint detection algorithms to accurately capture various complex user ac-
tions in VR environments, the following key factors need to be considered. Firstly, the
algorithm should have high robustness to cope with challenges such as occlusion, light-
ing changes, and complex backgrounds. Secondly, it is necessary to ensure real-time
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Fig. 1. Image of human keypoint positioning

performance to meet the low latency requirements of VR interaction. In addition, the
algorithm should be able to adapt to users of different body types and action patterns,
and have good generalization ability. Finally, it is necessary to optimize computational
efficiency to achieve efficient operation with limited hardware resources.

Figure 1 illustrates the precise keypoint positioning. In this Figure, the keypoint
detection algorithm for human keypoint positioning is mainly distributed in the joints
of face and limb joints and torso. Facial keypoints are mainly used in VR applications
for facial expression recognition, user authentication, and immersive interactive experi-
ences. By accurately capturing facial movements, real-time facial expression mapping
of virtual characters can be achieved, enhancing the authenticity of social interactions.
In addition, facial keypoints can optimize voice synchronization and improve character
performance. In security, they can be used for identity recognition, ensuring personal-
ized settings and data security. For immersive control, the combination of eye tracking
can provide a more natural way of visual interaction, improving the responsiveness and
user experience of VR systems [13, 19]. In dynamic VR environments, facial keypoint
detection faces challenges such as high real-time requirements, insufficient robustness
in complex scenes, and limited computing resources. To address these obstacles, the
following strategies can be adopted: firstly, optimize the algorithm structure and in-
troduce lightweight CNN to reduce computational complexity and improve processing
speed; Secondly, by combining multimodal information such as depth information and
optical flow information, the robustness of facial keypoint detection is enhanced; Finally,
parallel computing technology is utilized to further enhance the real-time performance of
the algorithm. In addition, an adaptive feature extraction method attention mechanism
is adopted to dynamically focus on key facial regions, improving detection accuracy. In
order to effectively improve the accuracy and real-time performance of facial keypoint
detection in dynamic VR environments with limited computing resources.

The data interaction function of the VR system is shown in Figure 2. In this Figure,
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Fig. 2. Interactive activity diagram of the interaction controller

the interactive controller has five states, starting from the initial waiting state. Af-
ter the game starts, it enters the state of receiving raw interactive data and recording
player operations. Then it encapsulates the data and sends the data status, processes
and uploads the interactive data to the cloud. Next, it enters the state of receiving
rendering results and receives rendered images from the cloud. After the game ends,
the controller returns to the waiting state and prepares for the next interaction [5]. In
VR games, interactive controllers must manage different states, including idle, active,
interactive, and feedback, to ensure a smooth user experience. Real-time state switching
determines response speed, such as the accuracy of gesture recognition, physical col-
lision detection, and environmental feedback. Accurate state management can reduce
latency, improve immersion, optimize the allocation of computing resources, and prevent
lag. The combination of intelligent predictive algorithms and adaptive control strategies
can enhance real-time interaction capabilities, making player interaction in virtual en-
vironments more natural and fluid. Moreover, its combination of intelligent prediction
algorithms and adaptive control strategies can enhance real-time interaction capabilities,
making players’ operations in virtual environments more natural and smooth.

The real-time state switching of interactive controllers is extremely important for
the accuracy of gesture recognition and physical collision detection. It reduces the de-
lay between user actions and system feedback, improving the real-time response. In
addition, dynamic computing resource allocation optimizes processing efficiency, prior-
itizing critical interaction tasks such as gesture recognition or collision detection. Real
time state switching also enhances the naturalness of interaction, allowing the system
to smoothly transition between different interaction modes based on user intent, im-
proving the user experience. It also optimizes error handling, allowing the system to
quickly adjust strategies to address recognition errors and reduce the negative impact
on the experience. Ultimately, real-time state switching enables the controller to adapt

Machine GRAPHICS & VISION 34(3):3–30, 2025. DOI: 10.22630/MGV.2025.34.3.1.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.3.1


10 Optimization of VR human-computer game interaction. . .

Fig. 3. Binocular positioning principle.

to complex scenarios, handle concurrent operations, ensure the accuracy and timeliness
of interactive operations, and significantly improve the interaction quality of VR systems.
However, in this study a universal 2D human keypoint definition methodwas used. This
method lacks depth information and is difficult to accurately recover human posture,
especially in occluded or complex motion scenes. Second, changes in perspective can
cause keypoint positions to shift, which affects the stability of posture estimation. In
addition, 2D methods are difficult to capture the 3D rotation information of human
joints, which limits the accuracy of VR interaction. Therefore, research is needed to
increase the dimensionality of human keypoint localization, combined with 3D keypoint
detection or deep learning models, to improve the accuracy of human pose recognition
in VR environments.

The ability to perceive depth, as well as the position of objects in three dimensions, is
crucial for HCI in VR. This is achieved through the use of binocular vision, which enables
the calculation of disparity, thereby enhancing both immersion and spatial perception
capabilities. In comparison with monocular vision, binocular vision has been demon-
strated to facilitate more precise distance measurement. In contrast to technologies that
rely on LiDAR or depth cameras, binocular vision offers several advantages, including
cost efficiency, broader applicability, and enhanced performance under variable lighting
conditions, thereby mitigating recognition failure. The principle of the method is shown
in Figure 3. The method uses dual lenses to detect the point simultaneously. Binocular
vision provides depth information for HCI in VR by simulating the stereoscopic imaging
mechanism of the human eye, significantly enhancing immersion and spatial perception.
It achieves three-dimensional spatial reconstruction through disparity calculation, op-
timizing users’ spatial positioning and interactive experience in virtual environments.
Binocular vision can capture user posture and gestures in real time, and achieve nat-
ural and smooth interaction with the help of keypoint detection technology, especially
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performing well in complex motion and occlusion scenes. In addition, binocular vision
supports seamless integration of virtual and real environments, enhancing the interactive
effects of augmented reality scenes. Its depth information can also optimize rendering
performance by dynamically adjusting rendering resources, improving visual effects, and
reducing computational resource waste. Binocular vision has strong adaptability and
can work stably in different lighting and complex backgrounds, expanding the appli-
cation scope of VR technology. However, the method is not adapted to more complex
game scenes and is affected by light. The keypoint dimension enhancement algorithm for
improving binocular vision technology can alleviate the problem of human occlusion in
VR scenes by integrating deep learning with traditional visual geometry modeling meth-
ods. Its theoretical basis mainly comes from core technologies such as stereo matching,
multi-view geometry, keypoint extraction, and dimension enhancement mapping. First,
the algorithm relies on the disparity information of binocular vision by constructing
the epipolar geometric relationship between the left and right cameras and combining
it with a deep learning-based keypoint detection network to achieve accurate extrac-
tion of human joint points. Compared to monocular vision methods, binocular systems
provide richer depth information, allowing the estimation of 3D positions based on unob-
structed perspectives even when certain areas are obstructed. In addition, the keypoint
dimensionality enhancement algorithm effectively completes missing keypoints caused
by occlusion by high-dimensional mapping of low-dimensional 2D keypoint information,
combined with spatiotemporal constraints and data-driven optimization strategies, such
as Transformer based sequence modeling methods, and improves global consistency. The
advantage of this method is that even if some joint points are occluded, the system can
still infer their reasonable positions based on known joint topology relationships, thus
reducing interaction errors caused by occlusion. Therefore, in this study the binocular
stereo vision methodwill be improved. The the 2D pixel position by coordinate transfor-
mationwill be uplifted. Firstly, the calculation of converting the world coordinate system
(CS) to the camera CS is shown in Equation (1).XC

YC

ZC

 = W ⊗

XE

YE

ZE

 + T , (1)

where (XE , YE , ZE) is the world CS, (XC , YC , ZC) is the camera CS, W is the rotation
matrix, and T is the translation vector. Then the camera CS is converted to the image
CS. The specific calculation is shown in Equation (2).

ZC

x
y
1

 =

a 0 0 0
0 a 0 0
0 0 1 0

 ⊗


XC

YC

ZC

1

 , (2)
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where (x, y, z) is the position of the same point in 2D image coordinates, a is the camera
focal length, and ZC is the depth coordinate. The conversion from image CS to pixel
CS is performed. The specific calculation is shown in Equation (3).m

n
1

 =

 1
dx 0 m0
0 1

dy n0
0 0 1

 x
y
1

 , (3)

where

m
n
1

 is the transformed chi-square coordinates, 1
dx and 1

dy are the scaling factors,

and m0 and n0 are the translations. In conclusion, it is possible to determine the trans-
formation relationship between the global CS and the pixel CS. Equation (4) illustrates
this particular computation.

ZC

m
n
1

 = λ ⊗
[
W T

0⃗ 1

]
⊗


XE

YE

ZE

1

 , (4)

where λ is the camera internal reference matrix. Camera calibration is critical for ac-
curate 3D reconstruction, as it can eliminate lens distortion and provide internal and
external parameters of the camera to improve reconstruction accuracy. The key steps in-
clude: image acquisition using a calibration board to obtain multi-angle images, feature
point detection to extract corner or marker points, parameter estimation to compute in-
ternal parameters (focal length and principal points) and external parameters (position
and rotation), aberration correction to correct for lens aberrations, and optimization and
tuning to use nonlinear optimization to improve calibration accuracy. These steps ensure
the accuracy of the camera model during the 3D reconstruction process and enhance the
authenticity of spatial point cloud data. Among them, the internal reference calibration
is calculated by the classical Zhang calibration method [21], which can find the distortion
coefficient of the camera. The specific calculation is shown in Equation (5).

dist = [θ1, θ2, θ3, φ1, φ2] , (5)

where θ is the radial distortion coefficient, and φ is the tangential aberration coefficient.
Camera external parameter calibration can be carried out by changing the camera posi-
tion and updating the position and attitude of the camera in the world CS. The specific
flow of the keypoint dimensional enhancement algorithm is shown in Figure 4. In this
Figure it can be seen that the keypoint dimensional enhancement algorithm consists of
two parts: determining the internal and external parameters of the camera and increas-
ing the dimension calculation of the data. Among them, the camera calibration stage
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Fig. 4. The overall flow chart of the dimensional enhancement algorithm.

is the preparatory stage of the algorithm, which needs to be performed only once. The
stage of calculating the result of increasing dimension needs to extract the feature points
in the 2D image to be processed and match them with the feature points of the known
3D structure. The geometric structure of the 3D scene is reconstructed based on the
position of each feature point in the 3D space and the recovered depth information. In
addition to this, the reconstructed 3D model is optimized and smoothed to improve the
accuracy and visual effect. Finally, the upscaled results such as depth map are output.
The dimensionality enhancement algorithm for feature point extraction and depth re-
covery can effectively improve 3D scene reconstruction. First, key feature points can be
extracted by deep learning or traditional methods to improve matching accuracy. Then,
binocular disparity estimation or deep neural network can be combined to recover depth
information. Next, dimensionality boosting algorithms are used to optimize point cloud
distribution, enhance geometric details of sparse regions, and improve reconstruction
accuracy. Finally, by integrating multi-perspective information and correcting errors,
the 3D model becomes more accurate and coherent, resulting in higher quality virtual
environment reconstruction. The advantages of the keypoint dimensionality enhance-
ment algorithm based on improved binocular vision technology in terms of speed and
accuracy are mainly reflected in efficient stereo matching, optimized depth estimation,
and keypoint reconstruction strategies. Compared with traditional methods, this algo-
rithm improves the efficiency of stereo matching by introducing an adaptive disparity
optimization strategy and a multi-scale feature fusion mechanism, making depth compu-
tation more stable and reliable, while reducing computational overhead and improving
real-time performance. In addition, this method combines sparse point cloud completion
technology in the keypoint reconstruction process, resulting in higher human keypoint
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reconstruction accuracy, especially in complex interactive scenes, which can provide more
accurate motion capture. The theoretical basis for dealing with human occlusion in VR
scenes lies in the disparity redundancy and depth compensation properties of binocular
vision. Specifically, in the binocular imaging process, different camera angles can provide
redundant information, allowing partially occluded keypoints to be inferred from unob-
structed angles. This process alleviates the problem of keypoint loss caused by occlusion
in monocular methods. Furthermore, the algorithm constructs spatial topological con-
straints based on graph neural networks, thereby enabling mutual constraints between
detected keypoints and inferring the position information of partially occluded areas.
This enables a more complete reconstruction of human body structure. Compared with
traditional methods, this improved algorithm can handle human keypoint detection in
complex scenes more stably. Even in occlusion situations, it can improve the prediction
accuracy of keypoints through multi-view feature compensation and spatial relationship
inference. At the same time, combined with optimized computation processes, it reduces
computational complexity, making it faster and more accurate in interactive VR scenes.

3.2. Optimization study of PIFPAF algorithm

The study adopts an improved binocular vision technique for human posture keypoint
positioning in VR human-computer games. However, to realize user action recognition
and animation simulation in game interaction systems, the study needs to further im-
prove the applicability and detection effect of the algorithm in different game scenarios.
PIFPAF is an advanced human pose estimation method, which is especially suitable
for multi-person pose detection in low-resolution and crowded scenes [18]. Its network
structure is shown in Figure 5.

The key to the PIFPAF algorithm in human pose estimation lies in the synergistic
effect of the two branches, part intensity field (PIF) and part association field (PAF).
The PIF branch is mainly used to detect the location information of human keypoints,
improve the accuracy of keypoint detection by predicting the density distribution of each
joint, and combine Gaussian distribution to enhance local features, so that the model
can accurately locate keypoints even when dealing with complex backgrounds and oc-
clusion situations. As a high-precision positioning mechanism for each keypoint, it not
only regresses the continuous spatial coordinates of keypoints, but also effectively en-
hances the robustness of the model to occlusion, attitude distortion, and low resolution
keypoints through the collaborative modeling of heatmaps and displacement vectors.
Especially, in human-computer interaction scenarios such as VR and virtual reality, the
PIF branch can provide more accurate responses to local human features with higher
density pixel level supervision, thereby significantly improving the system’s perception
ability. Gaussian distribution is used in the keypoint regression process to model the
position distribution of each predicted keypoint. By generating a two-dimensional Gaus-
sian heatmap centered on the keypoint on the feature map, accurate weighting of local
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Fig. 5. Structural diagram of the PIPAF network

areas is achieved, thereby improving the accuracy of keypoint localization. In complex
environments such as occlusion, lighting changes, or multi person interactions, Gaus-
sian distribution can highlight the saliency of key areas, effectively suppress background
interference, and enable the model to extract keypoint information more stably and accu-
rately. This mechanism significantly enhances the robustness and detection performance
of the PIFPAF model under high noise conditions. The PAF branch is responsible for
learning the correlation information between different joints in the human body, using
vector fields to represent the topological relationships between different joints, thereby
maintaining structural consistency in multi-person interaction scenarios and effectively
reducing the keypoint confusion problem. The combination of the two branches enables
PIFPAF to achieve higher robustness in posture estimation. The PIF branch ensures
accurate detection of keypoints, while the PAF branch ensures the rationality of the
human body structure, especially in challenging scenarios such as occlusion, complex
movements, and multi-person interaction. PAF can effectively utilize joint connection
relationships for posture correction.

In addition, compared to traditional regression-based methods, PIFPAF’s end-to-
end optimization strategy allows the network to globally optimize posture estimation in
terms of the entire structure, achieving a better balance between speed and accuracy.
The network first receives raw image data and inputs it into the PIFPAF model, extracts
features through convolutional layers, and downsamples at the max pooling layer. The
encoder consists of multiple residual blocks to process features in depth. Then, the two
branches separately generate keypoint field predictions. Finally, the decoder converts
the feature map into a set of keypoints. Further research is conducted to optimize the
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Fig. 6. Network structure in the improved PIFPAF feature extraction stage.

ResNet Block feature extraction network structure in the algorithm, in order to propose
an improved PIFPAF algorithm. Its structure is shown in Figure 6.

ResNet has a large number of parameters, making training difficult. As shown in
Figure 6, the convolutional layer is responsible for extracting local features of the image,
which is crucial for identifying keypoints as it can capture key visual patterns in the
image. Residual blocks alleviate the gradient vanishing problem in deep network train-
ing by introducing shortcut connections, allowing the network to train deeper layers
more effectively and extract richer feature representations. These deep level features are
particularly important for precise keypoint detection in complex environments, as they
provide more contextual information and details. In addition, replacing ResNet Block
with ShuffleNetv2 Block is to improve processing speed while maintaining accuracy. The
design of ShuffleNetv2 Block is more lightweight and suitable for real-time applications,
which is crucial for fast response and smooth interaction experience in VR environments.
Feature extraction is performed on the original data after the replacement network, and
the results are fed into the two-branch network for regression. The two-branch network’s
PIF branch is utilized to locate the important human body components and forecast each
one’s size, position, and confidence. Its output parameter set is calculated as shown in
Equation (6).

P ij = {pij
a , pij

x , pij
y , pij

o , pij
τ } , (6)

where i and j are the coordinates of the network output, pa is the confidence map of the
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pixel, pij
o is the correction parameter for computing the loss function, pij

τ is the Gaussian
smoothing parameter, and pij

x and pij
y are the components of the offset vectors in the x

and y directions of the keypoints closest to the pixel, respectively. The computation of
the Gaussian function is specifically shown in Equation (7).

G(x, y) = 1
2πτ2 e− x2+y2

2τ2 , (7)

where τ is the 2D form of the Gaussian function. Its bandwidth is positively correlated
with the influence range of the function. Based on the calculation of the parameters
and the function, the prediction results of the keypoint location can be obtained. Its
calculation is specified in Equation (8).

F (x, y) =
∑

ij

pij
a G(x, y|pij

x , pij
y , pij

τ ) , (8)

where F (x, y) is the keypoint position prediction function. PAF, on the other hand, is
used to connect the detected body parts through the association information to form
a complete human posture. Its output parameter set is calculated as shown in Equa-
tion (9).

Aij = {aij
a , aij

x1, aij
y1, aij

o1, aij
x2, aij

y2, aij
o2} , (9)

where aij
x1, aij

y1, aij
x2, and aij

y2 are the components of the offset vector on the horizontal
axis x and vertical axis y, respectively, and aij

o1 and aij
o2 are correction functions. The

result of the output of the network structure includes three types of outputs, and the
loss values of the three types of outputs are calculated and summed to obtain the total
output of the network. The specific calculation is shown in Equation (10).

LOSSES = BCELoss + SCALELoss + REGLoss , (10)

where BCELoss is the confidence correlation output, REGLoss is the offset vector cor-
relation output, and SCALELoss is the target scale related output.

In this way, in this study an optimized HCGI system is constructed. The local
game interaction system and the cloud game running platform make up the majority of
the system. Among them, the operation process of the game interaction system is as
follows. First, the images are captured by two GB cameras to obtain the raw images
of the current frame. Then, the AI performs algorithm calculations such as keypoint
detection, keypoint uplift, gesture recognition, etc. on the captured images to generate
the composed raw data. Then the data generated by the AI module is encapsulated to
form a JSON file and sent to the cloud via SOCKET communication. The operation
process of the cloud game platform first requires preliminary data processing, including
data reception, parsing, and operation. According to the processed data, the game is
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rendered, i.e. the processed data is used to generate JPG images. Then the rendered
image data is sent back to the local machine via SOCKET communication, and the
rendering effect is played in the local display module.

4. Performance analysis of optimized VR HCGI system

4.1. Experimental environment and data sources

In the experiment an improved binocular vision technology’s keypoint dimensionality
enhancement algorithm is used to evaluate the ability of the system to handle human
occlusion and interactive performance in VR scenes. The AR game HCI experimen-
tal verification between HCI system and cloud game platform can be conducted. The
software development environment for the experiment is Windows 10 operating system,
PyCharm Community development tool, and PyTorch GPU deep learning environment.
The hardware environment is RTX2060 6 G GPU and 16 G memory. In addition, the
experimental environment also includes a high-performance GPU computing platform,
and uses the Unity 3D engine and OptiTrack optical motion capture system to build a
high-precision interactive VR test environment. The data acquisition of the experiment
adopts a binocular stereo camera array to capture keypoint information under different
occlusion conditions, and optimizes keypoint dimensionality and pose estimation through
deep learning networks. The experimental setup includes several scenarios such as single
person, multiple people, partial occlusion, and heavy occlusion to test the adaptability
and robustness of the algorithm in different complex environments. Specific evaluation
metrics include spatial accuracy indicators such as keypoint prediction accuracy, mean
joint error, and posture estimation accuracy. The inference speed and computational
complexity of the algorithm are measured simultaneously to evaluate its real-time per-
formance. In addition, the experiment uses trajectory smoothness and latency indicators
to verify the smoothness of the interaction, ensuring that the algorithm remains efficient
and stable in complex interaction processes. The specific experimental scene is shown in
Figure 7.

The layout and environmental characteristics of the experimental scenes have a sig-
nificant impact on the performance of keypoint dimensionality enhancement algorithms
in binocular stereo vision technology. As shown in Figure 7, the experiment is conducted
in a specially designed VR interactive space with uniform and controllable lighting con-
ditions to reduce the impact of lighting changes on depth estimation. The lighting
equipment adopts a multi-angle light source arrangement at the top and side to ensure
sufficient illumination in different directions while avoiding strong shadows or overexpo-
sure, thereby improving the image quality obtained by the binocular camera. The exper-
imental space needs to ensure that participants have sufficient activity space to simulate
real-world VR application scenarios. In the experimental environment, some obstacles
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Fig. 7. Example of the experimental scene – a specially designed VR interactive space.

such as tables and chairs, simulated walls, or virtual interactive devices are appropri-
ately placed to test the performance of the algorithm in complex occlusion situations.
The presence of these obstacles can obscure keypoints of the human body, increasing the
difficulty of inferring depth information. In addition, the scene may contain dynamically
moving objects, such as other test subjects or virtual interactive elements, which may
affect the stability of the stereo matching algorithms. By introducing different types of
occlusion, such as partial occlusion and global occlusion, the adaptability of the algo-
rithm in environments of varying complexity are evaluated. Environmental factors have
a significant impact on the experimental results. First, lighting conditions can affect
the quality of binocular matching. Too dark or high contrast environments can lead to
errors in disparity calculation, thereby reducing the accuracy of keypoint dimensionality
enhancement. Second, the arrangement of obstacles affects the occlusion pattern. If the
occlusion is large or has strong reflective properties, it may introduce additional depth
estimation noise. In addition, the background texture characteristics of experimental
scenes can also affect the robustness of binocular matching. In complex backgrounds,
false matches may increase. Therefore, it is necessary to optimize the background ap-
propriately, such as using low-texture backgrounds to reduce interference. Finally, it is
also necessary to consider the installation position and angle of the camera to ensure
that the obtained binocular disparity information can fully cover important parts of the
human body while avoiding depth distortion caused by viewing angle deviation.

The experiment faces several challenges and limitations during implementation and
testing. First, human occlusion is complex and highly unpredictable, especially in multi-
person interactions, where the uncertainty of the occlusion region affects the accuracy
of keypoint dimensionality enhancement. Second, binocular stereo vision relies on high-
quality image matching, but depth estimation can be subject to errors under changing
lighting, dynamic backgrounds, or reflections. In addition, improving the algorithm has a
high computational complexity, and optimizing computational efficiency while ensuring
real-time performance has become a key issue. During the experimental process, it is
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necessary to balance the accuracy of data annotation with the size of the data, ensuring
that the occlusion data used for training is sufficiently rich to improve the generalization
ability of the model. Hardware limitations are also a factor. Although high-performance
GPUs are used for inference, the computational cost of the model still needs to be
controlled to avoid delays that affect the VR interactive experience. Finally, due to
the involvement of multiple device synchronizations in VR interaction, such as motion
capture systems, VR headsets, and binocular cameras, time synchronization errors can
affect the overall experimental results, requiring additional calibration steps to improve
system consistency.

A total of 100 participants were recruited for the study, including 50 males and
50 females. The age distribution of the selected subjects includes children, adolescents,
middle-aged, and elderly groups. Body types include lean, normal, and overweight.
Moreover, all the participants are without any motor dysfunction.

4.2. Performance analysis of the keypoint dimensional enhancement algo-
rithm with improved PIFPAF algorithm

To investigate the effect of different training strategies of the upscaled human keypoint
detection algorithm on the loss function of the dataset, the study uses Basenet and
Headsnet to train the dataset, respectively. Basene uses pre-trained model initialization
and fine tuning on multi-scale feature maps. During the training process, random data
augmentation is used to improve generalization ability, while the Adam optimizer is
used to dynamically adjust the learning rate to avoid gradient oscillations. Headsnet
uses a multi-task loss function combined with keypoint heatmaps and depth information
monitoring to improve its ability to recover occluded areas. A total of 120 rounds of
experiments were conducted. There were three groups of experiments. Test 1 and Test 3
were all trainded with Basene and Headsnet, respectively. Test 2 contained 50 rounds of
each of the two types of training. The loss function variation curves obtained from the
experiments are shown in Figure 8.

In Figure 8a, the loss functions of all three groups on the training set decrease with
the number of training rounds, and decrease rapidly at the beginning and then stabilize.
Among them, the starting value of the loss function of Test 1 is much higher than that
of the other two groups, which is 8. The starting values of Test 2 and Test 3 are 4.2
and 4.3, respectively. The loss functions of Test 2 and Test 3 have a close trend in the
early stage. However, in the later stage when Test 2 and Test 1 are stabilized, the loss
function changes are closer to each other and both of them are roughly stabilized at
about 1.5. Test 3 stabilizes with a slightly higher loss value, fluctuating within a range
around 2. In Figure 8b, the loss function value of the three experimental training sets on
the validation set decreases with the increase of training rounds. It decreases drastically
in a short period of time, after which the change decreases. However, the volatility
is relatively large, and all of them fluctuate in the range of 0.5 to 2.5. This may be
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a Training set loss curve. b Verification set loss curve.

Fig. 8. Loss function of the experiment on the dataset.

a World coordinates of real points. b World coordinates of predicted points.

Fig. 9. Test results of the dimensional enhancement algorithm on the target position.

due to the diversity of data in the validation set or the difference in the generalization
ability of the model on different data. It can be observed that Test 2 has more rounds
in the validation set in which the loss function value achieves the minimum value.The
experimental results show that the experimental group Test 2, which combines two
network training strategies, has the best training effect. To further verify the feasibility
of this keypoint dimensional enhancement algorithm, the experiment is to localize the
target object by this algorithm and compare the error between the predicted and actual
position. The world coordinates of the actual point are (x, y, z) and the world coordinates
of the predicted point are (x′, y′, z′). A total of 8 experiments are conducted and the
specific results are shown in Figure 9.

In Figure 9a, the position change range of the target object on the x-axis is large
and fluctuates in the range of [30, 120] cm. The position change curves of y-axis and
z-axis are almost symmetrical to each other, and their change ranges are [0, 35] cm and
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Tab. 1. Results of performance comparison of different algorithms.

Algorithm name Improved PIFPAF algorithm OpenPose ResNet50 + YoloV3

NE [%] 0.22 0.25 0.19
OKS 0.97 0.96 0.98

640×480 [fps] 13 4.2 0.75
320×240 [fps] 19 15 0.80
Extendibility High Middle Middle

CPU utilization ratio [%] 15.4 23.1 30.5

[40, 82] cm, respectively. In Figure 9b, the variation ranges of the target object in x-axis,
y-axis and z-axis are [29, 126], [1, 36], [40, 85] cm. Comparing the coordinate change
curves of the target in Figure 9a and 9b, it can be observed that the coordinates of
the predicted object position and the actual position using the keypoint dimensional
enhancement algorithm are very similar to each other, and the total average absolute
error is 2.11 cm. The experimental findings demonstrate that the keypoint dimensional
enhancement method is capable of precisely capturing the target’s shifting location in
space. It has good robustness, and can adapt to different environments and changes in
conditions. To investigate the performance of the improved PIFPAF algorithm, Open-
Pose, and ResNet50 + YoloV3 algorithms are compared. Two metrics, number of er-
rors (NE) and object keypoint similarity (OKS) are calculated. Moreover, the speed of
the algorithms is compared for different resolution images. OpenPose is a multi-stage
CNN-based pose estimation algorithm that uses a bottom-up approach to detect human
keypoints and analyzes limb structure through keypoint correlation. It is suitable for
multi-person pose estimation. ResNet50 + YoloV3 combines deep residual networks with
object detection algorithms, using ResNet50 to extract human features and YoloV3 for
efficient object detection and localization, ensuring the accuracy and real-time perfor-
mance of keypoint detection. The performance comparison between the two in VR HCI
scenarios can help analyze the accuracy and speed advantages of keypoint detection.
Table 1 displays the individual experimental outcomes.

In Table 1, the ResNet50 + YoloV3 algorithm performs best on the NE and OKS
metrics with 0.19% and 0.98, respectively, with the lowest error rate and the highest
keypoint similarity. OpenPose has the worst performance on both metrics, which may
be related to the bottom-up approach adopted by OpenPose. The improved PIFPAF
algorithm, on the other hand, performs in the middle, with NE and OKS of 0.22 and
0.97, respectively. However, in terms of processing speed, the improved PIFPAF algo-
rithm performs faster in both 640×480 and 320×240 resolutions, with 13 fps and 19 fps,
respectively. OpenPose’s processing speed at 640×480 resolution is somewhere in be-
tween at 4.2 fps. However, the processing speed at 320×240 resolution is 15 fps, which
is not much different from the improved PIFPAF algorithm. The processing speed of
ResNet50 + YoloV3 is significantly lower than the other two algorithms, which may be
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Tab. 2. Statistics of gesture recognition efficiency in 30 tests for each gesture.

Gesture Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5
open palm clench fist thumbs up victory symbol pointing

Correct identification in 1st run 28 26 29 27 28
Correct identification in 2nd run 1 3 0 1 1
Correct identification in 3rd run 0 1 1 1 1
Correct identification in 4th run 1 0 0 1 0
Correct identification in 5th run 0 0 0 0 0

due to the fact that the algorithm has sacrificed some of its speed in order to obtain
higher accuracy. Due to the improvement of the algorithm structure and the use of par-
allel processing techniques, the testing findings demonstrate that the revised PIFPAF
algorithm greatly boosts processing speed while maintaining higher accuracy.

4.3. Performance analysis of optimized VR HCGI system

To further verify the recognition accuracy of the VR human-computer gaming system
using the improved PIFPAF algorithm and binocular vision optimization for the actual
user actions, in the experiment five static gestures. Moreover, 30 sets of tests were
conducted to recognize the specified gestures in the interaction actions.

In order to standardize the evaluation of gesture recognition accuracy in interactive
systems, five commonly used static gestures were defined and assigned identification
numbers. Gesture 1 is open palm, Gesture 2 is clench fist, Gesture 3 is thumbs up,
Gesture 4 is victory symbol, and Gesture 5 is pointing. These gestures were selected due
to their clear and recognizable visual features, and were repeatedly tested throughout
the entire recognition experiment to maintain consistent gesture identifiers.

The total number of times each gesture was correctly recognized in the repeated test
is shown in Table 2. It can be seen that almost all of the five gestures were recognized
by the interactive system in one recognition run. Among them, Gesture 3 is recognized
in one recognition the largest number of times: 29, and Gesture 2 is recognized in one
recognition the smallest number of times: 26. Moreover, almost most of the gestures are
fully recognized in the first three runs. The results of the experiment demonstrate that
the interaction system can meet the needs of the player by accurately identifying the
user’s gesture movements while they are playing.

The experiment further investigates the recognition of the optimized interactive sys-
tem under different light or environment complexity conditions. Figure 10 displays the
specific outcomes. The graphs in this Figure show the trend of the recognition accuracy
of the system with the number of tests under different lighting environments. Figure 10b
shows the variation of the recognition time with the number of tests under different en-
vironmental complexities. The recognition accuracy under the three lighting conditions
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a The recognition accuracy of the system in different
lighting environments.

b The recognition time of the system in environments
of different levels of complexity.

Fig. 10. System identification performance analysis under different environmental conditions.

shown in Figure 10a is relatively close, with small fluctuations around 0.98. This indi-
cates that the system can maintain stable recognition performance under different light-
ing conditions. This may be due to the system’s strong lighting robustness in the feature
extraction and recognition algorithms, which can effectively adapt to different lighting
environments. As shown in Figure 10b, there is a slight difference in the recognition time
among the three environments in the initial stage. When the number of recognition is 5,
the recognition times for simple, normal, and complex environments are approximately
4.1 s, 4.2 s, and 4.3 s, respectively. As the number of tests increases, the detection time
of the three environments gradually stabilizes around 5.2 s. It can be concluded that
the complexity of the environment has a relatively small effect on the recognition time
of the system, and the system can achieve consistent and stable processing efficiency in
environments of different complexity after adapting to the environment.

Further experiments are conducted to compare the accuracy of posture recognition
among different user groups and dynamic scenarios. Among them, the experiment selects
four movement postures for recognition: jumping, fast turning, deep squatting, and for-
ward sprinting. The results are shown in Figure 11. The graphs in Figures 11a and 11b
show the comparison of pose recognition accuracy for different age groups and motion
poses of each algorithm. In Figure 11a, the improved PIFPAF algorithm performs best
in all age groups, with an accuracy rate higher than 0.95. OpenPose performs poorly in
all age groups, especially in children and middle-aged populations, with accuracy rates
below 0.90. ResNet50 + YOLOv3 performs well in young and middle-aged populations.
This may be due to the large deviation between the body types of children and the elderly
and the standard dataset, which affects the accuracy of the model’s keypoint detection.
As shown in Figure 11b, the improved PIFPAF algorithm performs best in all motion
types, with an accuracy rate around 0.97. The recognition accuracy range of OpenPose
is [0.85, 0.89]. The performance of ResNet50 + YOLOv3 is in between, with a maximum
recognition accuracy of about 0.93 for children. The unstable recognition accuracy of
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a The system’s posture recognition accuracy for users
of different ages.

b The recognition accuracy of different algorithms for
different dynamic scenes.

Fig. 11. Comparison of recognition effects of various algorithms on different groups and motion postures.

Tab. 3. Statistical analysis of keypoint detection algorithm performance.

Index OpenPose
ResNet50

+
YoloV3

Improved
PIFPAF

algorithm

Standard
deviation p

Key-point detection accuracy [%] 85.2 89.5 94.3 3.2 p < 0.05
Interaction response time [ms] 120.4 98.7 85.6 8.5 p < 0.01
Block recovery accuracy [%] 72.8 81.2 92.5 4.1 p < 0.01

False detection rate [%] 14.6 10.2 5.8 2.8 p < 0.05

OpenPose and ResNet50 + YOLOv3 may be attributed to the fact that activities such
as jumping and rapid turning result in brief losses of body keypoints. In contrast, activ-
ities like deep squatting and sprinting forward cause significant displacement, making it
challenging for single frame-based posture recognition algorithms to track reliably. The
improved PIFPAF optimizes keypoint matching through binocular vision, maintaining
high detection accuracy even under various intense movements.

To verify the feasibility of the proposed method, the experiment further conducts a
significance test on the optimized VR HCGI system. The specific results obtained are
shown in Table 3. According to this Table, the optimized VR human-machine game
interaction system performs better in several key indicators. Among them, the accu-
racy of keypoint detection reached 94.3%, which is significantly improved compared to
OpenPose’s 85.2% and ResNet50 + YoloV3’s 89.5%, with p < 0.05. This improvement
is mainly due to the keypoint dimension enhancement algorithm of binocular vision
technology, which effectively enhances the ability to capture spatial information and
improves the accuracy of keypoint recovery under occlusion. In terms of interaction
response time, the average processing time of the improved algorithm is only 85.6 ms,
which is significantly optimized compared to the other two algorithms, with a p < 0.01.
This optimization is due to the lightweight design of the algorithm structure, which
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Tab. 4. Results of key point detection and 3D attitude estimation accuracy.

Index Experimental
group 1

Experimental
group 2

Control
group 1

Control
group 2

Key point
detection accuracy

Average error of
pixel standard 1.2 1.5 2 2.5

Match success rate
[%] 95.2 93.7 89.5 88.7

3D pose
estimation accuracy

Average joint error
[cm] 1.5 1.8 2.2 2.8

Pose estimation
accuracy [%] 94.3 92.5 88.7 85.6

makes the inference process more efficient and reduces the computational overhead. In
terms of occlusion restoration accuracy, the improved algorithm reaches 92.5%, p < 0.01,
The false detection rate of the proposed method is reduced to 5.8% (p < 0.05), further
verifying the robustness of the improved algorithm.To further verify the effectiveness of
epipolar geometry in improving the accuracy of keypoint detection in VR systems based
on binocular vision, as well as the influence of coordinate transformation on the accuracy
of 3D pose estimation, two experimental groups were set up: high calibration accuracy
+ epipolar geometry and high calibration accuracy + epipolar geometry, and two control
groups: low calibration accuracy + epipolar geometry and low calibration accuracy +
epipolar geometry for comparative experiments.

The results obtained are shown in Table 4. In terms of keypoint detection accuracy,
the average pixel error of experimental group 1 is 1.2, and the matching success rate is
95.2%, both of which are better than the average error of 1.5 and the success rate of
93.7% in experimental group 2. The performance of the control group was poor, with
an average error of 2 and 2.5 for control group 1 and control group 2, respectively, and
a success rate of 89.5% and 88.7%, respectively. In terms of 3D pose estimation accu-
racy, the average joint error of experimental group 1 is 1.5 cm, and the pose estimation
accuracy is 94.3%, which is also better than experimental group 2. The control group
had larger errors of 2.2 cm and 2.8 cm, respectively, and lower accuracy rates of 88.7%
and 85.6%. In summary, the experimental group outperformed the control group in
keypoint detection and 3D pose estimation, indicating that high-precision camera cali-
bration and coordinate transformation methods can significantly improve the accuracy
of 3D pose estimation, reduce average joint error, and improve the accuracy of pose es-
timation. Experimental group 1 performed the best, indicating that the algorithm using
epipolar geometry constraints significantly outperformed the algorithm without epipolar
geometry in terms of keypoint detection accuracy and 3D pose estimation accuracy.
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5. Discussion

The experimental results showed that the optimized VR HCGI system outperformed
traditional methods in terms of keypoint detection accuracy, interaction response speed,
and occlusion recovery ability, thus improving the real-time interaction experience in vir-
tual environments. This optimization rendered VR devices more adaptable to complex
action recognition, multi-user interaction, and occlusion environments, and it could be
widely applied in immersive gaming, remote collaboration, rehabilitation training, and
other fields. For example, in sports VR games, the system must accurately recognize
large movements such as running and jumping to provide real feedback. In rehabili-
tation training, optimizing action recognition for different ages and physical conditions
ensures safety and effectiveness. It provided a new solution for the development of VR
interaction technology and laid the foundation for optimizing future intelligent HCI sys-
tems. This advantage was mainly due to the application of binocular vision technology
combined with the keypoint dimensionality enhancement algorithm, which could more
accurately restore occluded keypoints and improve the stability of detection. In terms of
keypoint detection accuracy, experimental results indicated that the improved algorithm
achieved 94.3%, which was significantly improved compared to OpenPose (85.2%) and
ResNet50 + YoloV3 (89.5%). This advantage was mainly due to the deep information
fusion of binocular vision, which allowed the system to exploit multi-view features and
reduce the error of monocular methods in occluded scenes. In addition, the keypoint
dimensionality enhancement algorithm enhanced local features and optimized globally,
making keypoint localization more accurate. In terms of interaction response time, the
optimized algorithm had an average processing time of 85.6 ms, which was nearly 30% less
than OpenPose’s 120.4 ms. This improvement was mainly due to the improved network
structure, which used a lightweight CNN for feature extraction and reduced computa-
tional complexity by optimizing feature matching strategies, making inference faster.
Compared to traditional deep learning methods, this algorithm was more suitable for
real-time interactive applications and improved the user experience. In terms of occlu-
sion restoration accuracy, the improved algorithm achieved 92.5%, a 20% improvement
over OpenPose’s 72.8%. This improvement was due to the introduction of binocular
depth estimation, which allowed the system to make reasonable inferences based on the
spatial information of other keypoints even when some keypoints were occluded. The ac-
curacy was higher compared to methods based on monocular RGB images. In addition,
by combining the Transformer structure for global feature modeling, the system could
infer missing parts from the full pose distribution, further improving robustness. Com-
pared with other studies, some existing research used long short-term memory networks
or gated recurrent units for temporal modeling. However, their computational complex-
ity was large and difficult to meet real-time interaction requirements. The improved
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model used in this study achieved a better balance between computational complexity
and accuracy, and was suitable for efficient HCI systems in VR scenes.

In the process of VR interaction, synchronizing facial keypoint data with voice input
to improve character performance and realism faces many challenges. Firstly, the syn-
chronization of data collection is a crucial issue. The capture of facial keypoints relies
on visual sensors, while voice input relies on audio devices, and there are differences in
sampling rate and processing speed between the two, resulting in difficulties in aligning
data on the timeline. Secondly, the real-time requirements are extremely high. The VR
environment requires a low latency interactive experience, and the synchronization pro-
cessing of facial expressions and speech needs to be completed in a very short time, which
puts extremely high demands on the efficiency of algorithms and hardware performance.
In addition, robustness in complex scenarios is also a challenge. In environments with
multiple interactions or noisy backgrounds, the accuracy of facial keypoint detection
and speech recognition can be affected, which in turn affects the synchronization effect.
Finally, the difference in personalized expression is also a problem. There are significant
differences in facial expressions and voice tones among different users. How to preserve
these personalized features during synchronization while achieving natural and smooth
interaction is a direction that needs further research in the future.

6. Conclusion

To capture and analyze the user’s gesture in real time to ensure real-time performance in
VR environment so as to provide a smoother and intuitive interaction experience, in this
study the PIFPAF algorithm was improved. It was also combined with binocular vision
technology to optimize the VR HCGI operation. The experimental results indicated that
the loss functions of all three tested groups decreased with the increase of training rounds
and then stabilized. Among them, Test 2 and Test 1 were closer to each other in terms
of the variation of the loss function as they stabilized on the training set, both roughly
stabilizing around 1.5. Test 3 had slightly higher loss values as it stabilized, fluctuating
in the range around 2. The loss function values of the three sets of experimental training
on the validation set fluctuated in the range of 0.5 to 2.5 in the later stages, and Test 2
had the highest number of rounds in which the loss function value achieved the minimum
in the validation set. The overall results of the performance verification of the keypoint
dimensional enhancement algorithm revealed that before and after using this algorithm,
the predicted object positions were very similar to the coordinates of the actual positions,
and the total average absolute error was 2.11 cm. The experimental results indicated
that the experimental group combining the two network training strategies had the best
training effect, and the keypoint dimensional enhancement algorithm could accurately
capture the moving position of the target in space with good feasibility. The study
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demonstrated that the proposed method exhibited favorable applicability and accuracy
in gaming scenarios.

However, the research is still limited by experimental conditions in specific environ-
ments, and the robustness under complex lighting and extreme occlusion conditions still
needs to be improved. Therefore, future research will optimize the generalization ability
of the model and combine it with deep learning to improve interaction accuracy. This
can improve the real-time and accuracy of VR interaction systems and provide new ideas
for the development of intelligent HCI technology.
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Abstract Classifying brain tumors in magnetic resonance images (MRI) is a critical endeavor in medical
image processing, given the challenging nature of automated tumor recognition. The variability and
complexity in the location, size, shape, and texture of these lesions, coupled with the intensity similarities
between brain lesions and normal tissues, pose significant hurdles. This study focuses on the importance
of brain tumor detection and its challenges within the context of medical image processing. Presently,
researchers have devised various interventions aimed at developing models for brain tumor classification
to mitigate human involvement. However, there are limitations on time and cost for this task, as well as
some other challenges that can identify tumor tissues. This study reviews many publications that classify
brain tumors. Mostly employed supervised machine learning algorithms like support vector machine
(SVM), random forest (RF), Gaussian Naive Bayes (GNB), k-Nearest Neighbors (K-NN), and k-means
and some researchers employed convolutional neural network methods, transfer learning, deep learning,
and ensemble learning. Every classification algorithm aims to provide an accurate and effective system,
allowing for the fastest and most precise tumor detection possible. Usually, a pre-processing approach is
employed to assess the system’s accuracy; other techniques, such as the Gabor discrete wavelet transform
(DWT), Local Binary Pattern (LBP), Gray Level Co-occurrence Matrix (GLCM), Principal Component
Analysis (PCA), Scale-Invariant Feature Transform (SIFT) and the descriptor histogram of oriented
gradients (HOG). In this study, we examine prior research on feature extraction techniques, discussing
various classification methods and highlighting their respective advantages, providing statistical analysis
on their performance.

Keywords: brain tumor, feature extraction, machine learning, deep learning.

1. Introduction

In today’s society, health issues are more common than ever, and people’s lifestyles are
also getting more and more unhealthy [18]. In the human body, brain is the most complex
organ; it is composed of nerve cells and tissues that regulate the most fundamental bodily
functions, such as muscle movement, breathing, and the senses. Brain tumors are one
of the most feared diseases in medical science because they are a type of tumor that
affects the central nervous system [37]. According to 2016 cancer statistics provided by
the World Health Organization (WHO), brain tumors are treated as the leading cause of
cancer. The challenge of manually classifying brain tumor MR images with comparable
structures or appearances is demanding and complicated. Classification of brain tumor
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MR images with similar structures or appearances is a difficult and challenging task, to
solve this issue, automated classification might be used to categorize MR images of brain
tumors with the least amount of radiologists’ involvement.

In recent years, medical image processing has emerged as a crucial tool for the early
detection of brain cancer, attracting significant attention from researchers worldwide [54].
Efforts are focused on developing models to assist specialists in accurately predicting the
presence of tumors [19]. Despite the challenges faced by developers, such as variations
in image composition, dimensions, and pixel quality, artificial intelligence—particularly
computer vision—plays a pivotal role in advancing the digitalization of medical diag-
nostics and enhancing active research in this field [41]. Deep learning (DL), a subset
of machine learning, enables computers to discover data representations, anticipate fu-
ture outcomes, and draw conclusions based on factual information. These techniques
are considered among the most significant computational intelligence strategies and are
widely applied in medical image classification [30]. However, without a pre-processing
phase and effective feature extraction methods, many of these strategies fail to deliver
their expected benefits [7]. Recently, machine learning (ML) and DL algorithms have
gained prominence as powerful tools for medical image classification, with transformers
and auto-encoders playing a critical role in addressing various challenges in the field.

Convolutional neural networks (CNNs) and vision transformers (ViTs), in capturing
complex patterns and semantic details from medical images, thereby improving clas-
sification performance [3]. Autoencoders, commonly utilized in unsupervised learning,
are instrumental in deriving meaningful representations from raw image data, aiding
in feature identification and dimensionality reduction [2]. Moreover, Generative Adver-
sarial Networks (GANs) offer the distinct ability to produce synthetic medical images,
enhancing data augmentation and increasing the diversity of training datasets, which
contributes to the creation of more robust classification models for medical imaging
applications.

The accuracy of brain tumor data classification is influenced by various factors, in-
cluding the type and complexity of the data, such as image composition, dimensions, and
pixel quality. It also depends on the methods employed, the techniques used for feature
extraction, and the parameters of the algorithms implemented in the approach [45].

The structure of this article is as follows. In Section 2 the search strategy is out-
lined. In Section 3 the existing literature is analysed in detail. Finally, in Section 4 the
conclusions of the study and the proposed directions for future research are presented.

2. Search strategy

In our study numerous significant manuscripts employing various methods and tech-
niques for brain tumor classification were studied. These articles were sourced from
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Fig. 1. The percentage of articles reviewed in this study.

platforms such as Google Scholar [58] and ScienceDirect [59]. Medical image classifi-
cation approaches often leverage diverse machine learning algorithms and convolutional
neural network architectures, including VGG, ResNet, AlexNet, and others. These meth-
ods incorporate distinct feature extraction techniques, such as descriptors, filters, and
Gabor transforms. Additionally, advanced techniques like vision transformers and auto-
encoders have gained prominence, offering the ability to extract meaningful representa-
tions from image data and significantly improving image analysis and classification [52].
These approaches are complemented by standard preprocessing techniques, including
resizing, normalization, data augmentation, and center cropping, which are commonly
applied in the initial stages of image analysis workflows.

In this review, the referenced studies were systematically categorized according to the
primary methodology employed: traditional Machine Learning, Deep Learning, Capsule
Networks, and Vision Transformers. Approximately 33% of the cited articles focused
on classical ML approaches, leveraging algorithms such as Support Vector Machines,
Random Forests, and k-Nearest Neighbors. These methods often relied on handcrafted
feature extraction techniques including Local Binary Patterns (LBP), Discrete Wavelet
Transform (DWT), and Gray Level Co-occurrence Matrix (GLCM). Deep Learning-
based studies accounted for around 27% of the references, with CNNs being the domi-
nant architecture. These approaches demonstrated improved performance through auto-
matic feature extraction and were frequently trained and evaluated on publicly available
datasets such as BraTS [56], ISLES [55], and Figshare [57]. In addition to the individual
contributions of Machine Learning (33%) and Deep Learning (27%) approaches, a no-
table 11% of the cited studies employed a hybrid ML & DL classification methodology,
combining handcrafted features with deep feature representations to enhance classifi-
cation accuracy. Capsule Networks were examined in roughly 18% of the cited work,
offering robust spatial feature representation and enhanced interpretability, particularly
in scenarios involving affine transformations. Vision Transformers, representing about
11% of the corpus, are an emerging trend, providing state-of-the-art performance by
modeling global image context through self-attention mechanisms. Figure 1 illustrates
the percentage of articles reviewed in this study.
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Fig. 2. Overview of the essential modules in a conventional ML-based brain tumor classification.

3. Analysis of the literature

The classification and segmentation of brain tumors remain an active area of research.
Many researchers are exploring this topic, utilizing various techniques mentioned earlier
to develop approaches with improved performance. The tables 1, 3, 4, 5, 6 below summa-
rize the methods used in this field, including classification techniques, feature extraction
methods, and the datasets employed.

3.1. Machine learning methods

Machine learning algorithms are among the most widely used methods for brain tumor
classification, renowned for their effective detection capabilities. A key objective in many
studies is to improve classification performance, which can be achieved through various
methods and techniques applied at different stages. Enhancements may occur during
dataset preprocessing, where traditional image processing techniques are implemented,
or during the feature extraction phase, leveraging descriptors and neural network archi-
tectures. Furthermore, optimization during the classification phase, such as fine-tuning
the algorithm’s parameters, plays a crucial role in achieving superior results. Together,
these efforts contribute significantly to improving the accuracy of classification outcomes.
Figure 2 presents an overview of the essential modules in a conventional ML-based brain
tumor classification.

Table 1 presents a comparison of studies that utilize different machine learning mod-
els, various feature extraction techniques, and diverse datasets to predict the classifica-
tion accuracy of brain tumors.

Based on the findings presented in Tab. 1, it is evident that multiple factors play
a role in enhancing the efficacy of brain tumor classification. Each approach employs
specific methods and techniques tailored to its primary objective, encompassing various
phases to achieve optimal results:

The standard data pre-processing stage is deemed crucial in the machine learning
workflow, as it ensures that the data is appropriately configured for the application of
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Tab. 1. Comparison of Machine Learning Models, Feature Extraction Methods, and Datasets for Brain
Tumor Classification Accuracy.

Ref Classification
Method

Feature Extraction Dataset Accuracy

[27] Machine Learning
Methods Classifier

Crop, Resize, Augmentation,
Transfer Learning

253 MRI,
3000 MRI,
3064 MRI

90%,
97%,
90%

[23] LSTM LBP, CNN 154 MRI 98%
[28] Machine Learning LBP 3064 MRI 95%
[33] SVM, KNN, SRC,

NSC, and the k-
means

Wavelet, Statistical features BraTS 2017 96%

[1] Random Forest Gray Level, LBP, HOG BraTS 2013 93%
[12] Random Forest Clas-

sifier
RGB to Gray, Resize, LBP, HOG,
SFTA, GWF

BraTS 2012,
BraTS 2014,
BraTS 2015,
BraTS 2017

90%,
89%,
94%,
91%

[38] SVM Classifier, AC-
CLS Segmentation

RGB to Graylevel Histogram
Equalization, KMFCM

41 MRI 99%

[29] LSTM CNN, DWT 3064 MRI 98%
[14] Support Vector Ma-

chine, K Nearest
Neighbors, Neural
Network, ELM

Resize, Watershed segmentation,
morphological process, Wavelet

16 MRI 96%

[21] Decision Tree, Multi-
Layer Perceptron

Sigma Filter, Adaptive threshold,
Region Detection, Binary Object
Feature

174 MRI 95%,
91%

[11] Machine Learning
Methods Classifier

Weiner filter, Potential Field
clustering, threshold, morpholog-
ical dilation, LBP, GWT

86 MRI,
BraTS 2013,
BraTS 2015

93%,
93%,
97%

[42] MLP Näıve bayes RGB to Grey (Binarization), Me-
dian Filter (Noise Remove), edge
detection, watershed, GLCM

212 MRI 98%,
91%

[51] Machine Learning,
Ensemble Learning

Crop, Resize, Augmentation,
DWT, HOG

253 MRI 92%

[43] Support vector ma-
chine

DTI analysis, Perfusion analysis,
segmentation, normalization

141 MRI 97%

[39] Support vector ma-
chine

Contrast Stretching, Augmenta-
tion, Transfer learning AlexNet,
GoogLeNet, VggNet

3064 MRI 98%
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Fig. 3. The classification accuracy reported in each brain tumor study, based on machine learning
algorithms and their respective datasets. Labels given in the row “Reference” are related to
literature references according to Tab. 2, p. 37.

learning algorithms, thereby enhancing the quality, convergence, and performance of re-
sultant models. This phase encompasses techniques such as data cleaning, normalization,
scaling, and augmentation, all of which are recommended for thorough examination.

The feature extraction phase plays a pivotal role in enhancing data representation
and reducing dimensionality for improved interpretability and comprehension. Various
techniques, including CNN layers, LBP, DWT, HOG, GLCM, dilation, and filters, are
commonly employed in this phase, each serving a specific purpose. Making the right
choice of technique can significantly enhance classification accuracy. In the final phase,
known as the classification or decision-making phase, the selection of parameters for the
classification algorithm significantly impacts the effectiveness of the approach.

Figure 3 illustrates the highest accuracy rates achieved for brain tumor classification
across different datasets. These accuracies were obtained through the application of
various machine learning methods, highlighting the effectiveness of the employed classi-
fication techniques. Notably, the preprocessing and feature extraction methods played a
crucial role in enhancing the model performance. By refining the input data, reducing
noise, and selecting the most relevant features, these techniques contributed significantly
to the high accuracy observed in the figure. This evaluation underscores the importance
of carefully designing preprocessing pipelines and feature extraction strategies to opti-
mize classification performance in brain tumor diagnosis.

Traditional machine learning algorithms, while effective in numerous classification
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Tab. 2. Relations of labels given in Figs. 3, 5, 6, 8, 10 in the row ‘References’ to the literature references
denoted here as ‘Ref.’.

Label Ref. Label Ref. Label Ref. Label Ref. Label Ref.l1 [1] l4 [4] l5 [5] l6 [6] l7 [7]l8 [8] l9 [9] l10 [10] l11 [11] l12 [12]l13 [13] l14 [14] l15 [15] l16 [16] l17 [17]l20 [20] l21 [21] l23 [23] l24 [24] l25 [25]l26 [26] l27 [27] l28 [28] l29 [29] l31 [31]l32 [32] l33 [33] l34 [34] l36 [36] l38 [38]l39 [39] l40 [40] l42 [42] l43 [43] l44 [44]l46 [46] l47 [47] l48 [18] l49 [48] l50 [49]l52 [50] l54 [51] l56 [53]

tasks, exhibit several limitations when applied to complex medical imaging scenarios.
One of the primary challenges lies in their reliance on handcrafted feature extraction,
which often demands significant domain expertise and may fail to capture the full in-
tricacies of high-dimensional medical data such as MRI scans. This manual process can
lead to suboptimal performance, particularly in cases where subtle spatial patterns are
critical for accurate tumor classification or segmentation. Furthermore, traditional ML
models typically struggle with generalization when applied to diverse datasets or varying
imaging conditions. To address these shortcomings, deep learning techniques—especially
convolutional neural networks—have emerged as a powerful alternative. These models
are capable of automatically learning hierarchical features directly from raw data, re-
ducing the dependency on manual intervention and enhancing model robustness. By
capturing both low-level and high-level features through stacked layers, deep learning
architectures offer improved performance and scalability, making them more suitable for
complex brain tumor analysis tasks. As a result, the shift from traditional ML to DL
represents a significant advancement in the development of more accurate and automated
diagnostic tools.

3.2. Deep learning methods

Convolutional Neural Networks are a type of multi-layer feedforward artificial neural
network, initially inspired by the visual cortex [22]. CNNs play a pivotal role in deep
learning and have emerged as one of the most commonly used architectures in recent
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Fig. 4. Illustration showing the fundamental layers of a Convolutional Neural Network.

years, particularly for image recognition tasks. They excel in performing complex op-
erations through convolution filters, which enable effective feature extraction. The con-
volutional layers in CNNs progressively learn intricate visual patterns from raw input
data by applying filters to detect features such as edges, textures, and patterns in im-
ages. This hierarchical representation of data not only facilitates a deeper understanding
of the inherent structures within the data but also significantly enhances classification
performance. The initial layer in a Convolutional Neural Network serves to introduce
the input image into the model, initiating the processing sequence through subsequent
layers. As the data progresses, convolutional operations, pooling layers, and activation
functions work collaboratively to extract meaningful and abstract features from the in-
put. These features are then passed to one or more fully connected layers, which play a
crucial role in tasks such as classification, segmentation, or detection of objects within
the image. Ultimately, the final output is produced by the output layer, which delivers
the network’s prediction or decision. A typical CNN structure is depicted in Figure 4.

Table 3 presents a comparison of studies that utilize different deep learning architec-
tures, various feature extraction techniques, and diverse datasets to predict the classifi-
cation accuracy of brain tumors.

The findings in the table underscore critical factors contributing to the optimization
of brain tumor classification methods, with each approach utilizing specific methods and
techniques across various phases:

• Data Preprocessing: This phase is vital for preparing data for learning algorithms,
which enhances model quality, convergence, and overall performance. Techniques
such as data cleaning, normalization, scaling, and augmentation play an essential role
in ensuring the data is well-suited for analysis.

• Feature Extraction: A key step in improving data representation and reducing dimen-
sionality, feature extraction enhances interpretability and contributes significantly to
classification accuracy. Methods like CNNs layers, local binary patterns (LBP), dis-
crete wavelet transforms (DWT), histograms of oriented gradients (HOG), gray-level
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Tab. 3. Comparison of Deep Learning Architectures, Feature Extraction Methods, and Datasets for
Brain Tumor Classification Accuracy.

Ref. Classification
Method

Feature Extraction Dataset Accuracy

[31] CNN Classifier RGB to Grayscale, Edge de-
tection, Morphological oper-
tion, watersheld

500 MRI 72%

[40] CNN Classifier histogram equalization tech-
nique, Gaussian filter

3064 MRI 93%

[46] CNN Classifier Resize, Augmentation,
Grayscale, regularization
techniques

3064 MRI,
516 MRI

96%,
98%

[32] DNN Fuzzy C-means, DWT, PCA 66 MRI 97%
[16] CNN Classifier Resize, Augmentation 3064 MRI 97%
[44] CNN Classifier MidResBlock 3064 MRI 96%
[10] DNN Classifier Resize, Crop Lesion, Un-

cropped Lesion, segment Le-
sion

3064 MRI 98%

[47] CNN Classifier MidResBlock 3064 MRI 94%
[13] DNN Resize, CNN, Segmentation BraTS 2012,

BraTS 2013,
BraTS 2014,
BraTS 2015,
ISLES 2016,
ISLES 2017

98%,
99%,
100%,
93%,
95%,
98%

[48] Ensemble of ViTs optimization of transformer
parameters

3064 MRI 98.7%

[9] Hybrid transformer
enhanced convolu-
tional neural network
(TECNN)

CNN, Attention mechanism BraTS 2018,
Figshare
datasets

96.75%,
99.1%

co-occurrence matrices (GLCM), dilation, and various filters provide specialized ben-
efits in this regard.

• Classification: The selection of parameters in this phase has a profound impact on the
effectiveness of the approach. Careful and informed parameter choices are essential
to maximize performance and achieve optimal results.
Figure 5 presents a graphical representation of the highest accuracy rates achieved

for brain tumor classification across different datasets using deep learning methods, par-
ticularly Convolutional Neural Networks. The remarkable performance observed can
be attributed to the effectiveness of CNNs in automatically extracting relevant features
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Fig. 5. The classification performance achieved in various brain tumor studies utilizing deep learning
techniques across different datasets. Labels given in the row “Reference” are related to literature
references according to Tab. 2, p. 37.

from medical images. Furthermore, preprocessing techniques such as image normal-
ization, augmentation, and noise reduction have played a key role in enhancing the
quality of input data, ultimately improving model accuracy. The combination of well-
structured preprocessing pipelines and robust feature extraction capabilities of CNNs has
significantly contributed to achieving high classification performance, demonstrating the
potential of deep learning in brain tumor diagnosis.

Despite the considerable advancements brought by deep learning in medical image
analysis, several limitations continue to hinder its full potential in clinical applications.
Deep learning models, especially convolutional neural networks, demand extensive com-
putational power and access to large, well-annotated datasets to achieve high perfor-
mance. In practice, such datasets are often scarce, particularly in specialized medical
domains like brain tumor diagnosis. Furthermore, these models are prone to overfitting,
especially when trained on limited data, and their ”black-box” nature makes their deci-
sion processes difficult to interpret. Additionally, deep learning algorithms may struggle
to generalize effectively when applied across different clinical settings or imaging devices.
To address these issues, recent research has explored hybrid approaches that integrate
the strengths of both traditional machine learning and deep learning techniques. These
combined frameworks often use deep learning for automated feature extraction, followed
by classical ML algorithms—such as SVM or Random Forest—for final classification.
This strategy not only reduces dependency on large labeled datasets but also enhances
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model interpretability and robustness. By leveraging the complementary advantages
of both paradigms, these integrated systems aim to improve diagnostic accuracy and
reliability in complex imaging tasks.

3.3. ML and CNN

Recently, numerous approaches have employed convolutional neural networks in com-
bination with machine learning algorithms to enhance classification performance. This
research focuses on integrating CNN techniques with various machine learning algorithms
to optimize performance in image classification tasks. By harnessing the feature extrac-
tion capabilities of CNNs alongside the adaptability of machine learning algorithms for
classification, these approaches aim to achieve significant improvements in classification
accuracy. This integration contributes to advancements in computer vision and pattern
recognition, paving the way for more effective solutions in the field. Table 4 presents a
comparison of studies that utilize different machine learning models and deep learning
architectures, various feature extraction techniques, and diverse datasets to predict the
classification accuracy of brain tumors.

Based on the results presented in Tab. 4, we observe the significant advancements in
CNN techniques and machine learning algorithms for extracting intricate features from
complex datasets, particularly in the field of image classification. By harnessing the

Tab. 4. Comparison of machine learning models and deep learning architectures, Feature Extraction
Methods, and Datasets for Brain Tumor Classification Accuracy.

Ref. Classification Method Feature Extraction Dataset Accuracy

[35] SVM, DNN Fuzzy C-Means (FCM), CNN BraTS
2015

97%

[20] SVM, KNN, transfer
learned, deep network

GoogLeNet, CNN 3064 MRI 97%,
98%,
92%

[34] artificial neural net-
work, Parzen window,
k-Nearest Neighbors

Wavelets, PCA 166 MRI 98%,
99%,
99%

[53] Machine Learning
Methods Classifier,
VGG16

Resize, Augmentation, Crop,
Transfer Lerning

253 MRI 88%,
98%

[17] SVM, Decision Tree,
Random Forest, CNN,
ResNet 50, AlexNet,
Google Lenet, hybrid
DCNN-LUNET

Resize, Laplace Gaussian
(LOG) filtering and contrast-
limited adaptive histogram
smoothing, VGG-16, ROI
Segmentation, FCM-GMM

260 MRI 97%,
96%,
97%,
98.82%
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Fig. 6. The classification outcomes reported in several brain tumor studies that employed Machine and
Deep Learning approaches on diverse datasets. Labels given in the row “Reference” are related
to literature references according to Tab. 2, p. 37.

hierarchical feature extraction capabilities of CNNs alongside the discriminative power
of machine learning algorithms, these approaches strive to substantially enhance classifi-
cation performance. This integration aims to achieve higher accuracy and robustness in
classifying diverse image datasets, thereby contributing to progress in computer vision
and pattern recognition research.

Figure 6 illustrates the highest accuracy rates achieved for brain tumor classification
across various datasets using both traditional machine learning techniques and Convo-
lutional Neural Networks. The superior performance is largely influenced by the effec-
tiveness of feature extraction methods, which play a crucial role in distinguishing tumor
types. Preprocessing steps, including contrast enhancement, noise reduction, and data
augmentation, further refine the input images, ensuring better model generalization.
The combination of handcrafted feature extraction in machine learning and automatic
feature learning in CNNs has led to significant improvements in classification accuracy,
highlighting the importance of data quality and of the preprocessing steps in achieving
optimal results.

Traditional machine learning techniques face notable limitations, particularly in the
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context of complex medical imaging tasks such as brain tumor classification. These meth-
ods often depend on handcrafted feature extraction, which requires substantial domain
knowledge and may overlook critical spatial or contextual information embedded in the
images. Although deep learning has emerged as a powerful alternative—capable of learn-
ing hierarchical features directly from raw data—it also presents significant challenges.
These include the necessity for large annotated datasets, high computational require-
ments, risk of overfitting, limited transparency in decision-making, and reduced adapt-
ability across heterogeneous clinical settings. In light of these issues, Capsule Networks
have been proposed as a promising new approach. Unlike conventional CNNs, Capsule
Networks are designed to preserve spatial hierarchies and relationships between features,
making them more robust to affine transformations and better suited for modeling com-
plex structures in medical images. Moreover, their architecture allows for enhanced
interpretability and potentially better generalization from smaller datasets, offering a
compelling direction for overcoming some of the critical shortcomings observed in both
traditional ML and standard deep learning models.

3.4. Capsule network architectures

While convolutional neural networks have been extensively utilized for feature extrac-
tion in image processing tasks, they exhibit limitations in capturing spatial relationships
among features. Capsule Networks address this limitation by preserving the spatial hi-
erarchy of features more effectively. CapsNets introduce the concept of capsules, which
encapsulate spatial information more efficiently than traditional CNNs. Furthermore,
CapsNets offer significant advantages, including improved generalization, robustness to
affine transformations, and enhanced interpretability. These qualities make them a com-
pelling alternative for tasks requiring accurate spatial feature extraction and classifi-
cation in medical imaging. The table below provides a detailed overview of various
methodologies that employ capsule networks for brain tumor classification. Figure 7
illustrates the standard pipeline employed in brain tumor segmentation approaches uti-
lizing Capsule Networks (CapsNet).

Table 5 presents a comparison of studies that utilize capsules networks architectures,
various feature extraction techniques, and diverse datasets to predict the classification
accuracy of brain tumors.

Currently, much research in classification highlights the limitations of traditional
CNNs in effectively extracting spatial features, largely due to their reliance on pool-
ing operations, which can result in the loss of critical spatial information. To over-
come these challenges, recent studies have explored the use of capsule networks as a
promising alternative. Capsule networks are specifically designed to capture hierarchical
spatial relationships within images more effectively than CNNs, potentially improving
feature extraction and classification accuracy. Additionally, capsule networks provide
several advantages, including better handling of spatial hierarchies, increased robustness
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Fig. 7. Illustration of a typical segmentation workflow leveraging Capsule Networks.

Tab. 5. Comparison of capsules networks architectures, Feature Extraction Methods, and Datasets for
Brain Tumor Classification Accuracy.

Ref. Feature Extraction Dataset Accuracy

[6] Hyperparameter optimization 3064 MRI 90%
[7] T-distributed Stochastic Neighbor Embedding (TSNE) 3064 MRI 86%
[8] Boosting approach 3064 MRI 92%
[49] Rotation and patch extraction 3064 MRI 94%
[4] activation function 3264 MRI 96.7%
[5] CapsNet, dilation convolution 3064 MRI 95.54%
[15] SegCaps–Capsule network, brain tumor segmentation BraTS 2020 87.96%

to affine transformations, and enhanced interpretability of learned features. This innova-
tive approach addresses the shortcomings of CNNs in spatial feature extraction, offering
significant advancements in image classification for medical applications.

The strong performance of these models can be attributed to their ability to capture
spatial hierarchies and maintain spatial relationships between features, unlike traditional
CNNs. The effectiveness of the model is further enhanced by preprocessing techniques
such as normalization, noise reduction, and data augmentation, which improve the qual-
ity of input data. Additionally, robust feature extraction methods contribute to the
model’s capacity to distinguish complex patterns within brain tumor images, ultimately
leading to superior classification accuracy. The chart in Fig. 8 illustrates the classifica-
tion outcomes reported in several brain tumor studies that employed Capsule Network
approaches on diverse datasets.

While Capsule Networks have demonstrated significant potential in preserving spa-
tial hierarchies and improving robustness to affine transformations, they still face several
practical limitations that hinder their widespread adoption in medical imaging tasks.
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Fig. 8. The classification performance achieved in various brain tumor studies utilizing capsule networks
techniques across different datasets. Labels given in the row “Reference” are related to literature
references according to Tab. 2, p. 37.

One of the main challenges lies in their computational inefficiency; the dynamic rout-
ing mechanism, which is central to Capsule Networks, is resource-intensive and leads to
slower training and inference times. Additionally, these networks are relatively sensitive
to hyperparameter tuning and lack standardized architectures, making their implemen-
tation and optimization more complex compared to traditional deep learning models.
In response to these shortcomings, Vision Transformers have emerged as a compelling
alternative. Unlike Capsule Networks, ViTs leverage self-attention mechanisms to model
global dependencies within an image, allowing for more efficient capture of contextual
information across the entire visual field. Moreover, Vision Transformers demonstrate
greater scalability and adaptability, showing strong performance even when trained on
relatively limited data through techniques such as transfer learning and data augmen-
tation. As research in this area progresses, ViTs are increasingly being considered as a
powerful tool for medical image classification and segmentation, potentially overcoming
the architectural and computational limitations associated with Capsule Networks.

3.5. Vision Transformers

Recent advances in image classification have drawn attention to the inherent limitations
of conventional Convolutional Neural Networks, particularly in capturing long-range de-
pendencies and global contextual information within medical images. These limitations
stem mainly from the localized nature of convolution operations and the use of pooling
layers, which can lead to the loss of important spatial relationships. To address these
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Fig. 9. Overview of the Vision Transformers model.

issues, researchers have increasingly explored Vision Transformers as a powerful alter-
native. Unlike CNNs, Vision Transformers leverage self-attention mechanisms to model
global interactions across the entire image, allowing for more comprehensive and context-
aware feature representation. This enables ViTs to retain critical spatial and semantic
details, enhancing classification performance. Furthermore, ViTs offer advantages such
as scalability, better generalization in complex datasets, and improved interpretability
due to their attention maps, which highlight key regions influencing decision-making.
This modern architecture represents a promising direction for improving image classifi-
cation in brain tumor analysis and other medical imaging tasks.

The high performance of these models can be credited to their ability to analyze im-
ages holistically, maintaining spatial coherence while focusing on the most informative
regions through self-attention. Unlike CNNs, which process image patches locally, ViTs
treat the entire image as a sequence of patches, enabling the network to recognize com-
plex global patterns that are essential in medical image analysis. This performance is
further strengthened by preprocessing strategies such as image normalization, denoising,
and data augmentation, which enhance input consistency and variability. Additionally,
the integration of advanced feature extraction pipelines allows the model to effectively
distinguish between subtle differences in tumor structures, leading to highly accurate
and reliable classification outcomes. These capabilities make Vision Transformers a
compelling choice for future developments in AI-assisted medical diagnostics. Figure 9
illustrates the standard pipeline employed in brain tumor segmentation approaches uti-
lizing vision transformers.
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Table 6 presents a comparison of studies that utilize vision transformers architectures,
various feature extraction techniques, and diverse datasets to predict the classification
accuracy of brain tumors.

Based on the analysis shown in Tab. 6, it becomes clear that various components con-
tribute significantly to improving the performance of brain tumor classification systems.
Each method integrates specific techniques aligned with its core objective, progressing
through several essential stages to achieve optimal accuracy. The data preprocessing
phase remains fundamental in Vision Transformer-based workflows, as it prepares the
input for optimal attention-based modeling. Techniques such as normalization, image
denoising, patch embedding, resizing, and data augmentation are critical in ensuring
consistency, reducing artifacts, and enhancing generalization. These operations help the
model interpret input images more effectively during training and inference.

The feature representation and encoding stage is particularly crucial in Vision Trans-
formers. Instead of relying on handcrafted features or convolutional layers, ViTs divide
images into fixed-size patches and transform them into sequences of embeddings, which
are processed through self-attention layers. This enables the model to capture both local
and global dependencies across the entire image, significantly enriching the representa-
tion of complex patterns in brain tumor regions. Additionally, position embeddings are
integrated to retain spatial information, further improving interpretability.

Finally, during the classification stage, the transformer encoder’s output is used to
make predictions through fully connected layers. The effectiveness of this stage is influ-
enced by the architecture’s depth, the number of attention heads, and the choice of loss
functions and optimization strategies. The Figure 10 highlights the top classification ac-
curacies achieved across multiple datasets using Vision Transformer-based models. These
impressive results are largely attributed to the robust preprocessing procedures and the
ViTs’ superior ability to model long-range spatial relationships. The evaluation reaffirms
the importance of designing effective preprocessing workflows and utilizing advanced at-
tention mechanisms to optimize classification performance in brain tumor diagnostics.

Tab. 6. Comparison of Vision Transformers model, Feature Extraction Methods, and Datasets for Brain
Tumor Classification Accuracy.

Reference Feature Extraction Dataset Accuracy

[50] Transformers and 3D CNN BraTS 2019, BraTS 2020 90.09%
[24] Swin transformers and CNN BraTS 2021 93.3%
[25] Transformers and CNN MSD dataset 78.9%
[26] Transformers and 3D CNN BraTS 2021 90.8%
[36] Transformers and 3D CNN “U-Net

shaped encoder-decoder”
BraTS 2021 91.2%
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Fig. 10. The classification accuracy of each study on brain tumors, based on vision transformers and
the corresponding datasets used. Labels given in the row “Reference” are related to literature
references according to Tab. 2, p. 37.

The figure below presents the classification results obtained from multiple brain tumor
studies that adopted Vision Transformer-based methods across various datasets.

Although Vision Transformers have gained traction for their ability to model long-
range dependencies and capture global image context more effectively than traditional
convolutional approaches, they are not without limitations. One of the primary chal-
lenges associated with ViTs is their need for extensive training data to perform opti-
mally, which can be a significant constraint in the medical imaging field where labeled
datasets are often limited. Additionally, their architecture tends to be computationally
demanding, both in terms of memory usage and training time, which can limit their ac-
cessibility in resource-constrained clinical environments. ViTs also exhibit sensitivity to
hyperparameter selection and are often less interpretable compared to some traditional
machine learning models. These constraints have sparked a wave of innovation among
researchers who are actively exploring novel hybrid models, architectural optimizations,
and lightweight transformer variants tailored to medical contexts. The current trend
involves designing more efficient classification algorithms that combine the strengths of
ViTs with other paradigms, such as convolutional modules or attention-enhanced ML
models, to achieve better accuracy, generalizability, and scalability. This competitive re-
search environment is fostering the development of next-generation models that aim to
balance performance, efficiency, and interpretability for robust brain tumor classification
and other critical diagnostic tasks.
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3.6. Discussion

In conclusion, the classification of brain tumors using Machine Learning, Deep Learning,
Capsule Network architectures, and Vision Transformers model has demonstrated signif-
icant advancements in accuracy and robustness. DL approaches, particularly Convolu-
tional Neural Networks, have surpassed ML techniques by automatically learning hierar-
chical features, improving generalization. More recently, Capsule Networks have further
enhanced classification performance by preserving spatial relationships between features,
addressing limitations of CNNs in detecting complex structures. The effectiveness of
these models is strongly influenced by preprocessing techniques such as normalization,
noise reduction, and data augmentation, which enhance input quality. Additionally, fea-
ture extraction methods play a crucial role in identifying relevant tumor characteristics,
leading to improved classification accuracy. The integration of advanced architectures
with optimized preprocessing and feature extraction strategies paves the way for more
reliable and precise brain tumor diagnosis, contributing to enhanced decision-making in
medical imaging.

A critical challenge in deploying ML, DL, Capsnet and Vit models for brain tumor
analysis lies in their limited ability to generalize across diverse clinical settings. Varia-
tions in MRI acquisition protocols, scanner types, and patient populations often lead to
distributional shifts that can significantly impact model performance. Models trained
on a specific dataset may not perform reliably when applied to external data due to
differences in resolution, contrast, noise levels, and anatomical variability. Addressing
this issue requires the integration of domain adaptation techniques, robust data aug-
mentation, and cross-institutional validation to ensure that AI models remain accurate,
consistent, and clinically applicable across a wide range of imaging environments.

4. Conclusion and future scope

In this review, we provided an in-depth examination of recent advances in brain tumor
classification and segmentation, focusing on notable research studies that implement a
variety of machine learning, deep learning, Capsule Networks, and Vision Transformers
techniques. These studies have contributed significantly to the improvement of classifi-
cation performance through enhanced feature extraction, preprocessing, and the careful
selection of classification algorithms. The analysis underscores the importance of each
stage in the diagnostic pipeline—from data preparation through normalization and aug-
mentation, to robust feature extraction using methods like CNNs, Gabor filters, DWT,
LBP, and GLCM, and finally to accurate classification through optimized models.

While the reviewed models demonstrate impressive performance, this study also ac-
knowledges key limitations that remain a challenge in clinical applications. For instance,
traditional ML approaches rely heavily on handcrafted features, which often limit their
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performance in complex imaging contexts. DL models, although more effective in learn-
ing features automatically, face challenges such as high computational demands, the need
for large annotated datasets, interpretability issues, and limited generalizability across
diverse clinical environments.

To address these challenges, emerging research is exploring hybrid models that com-
bine ML and DL to leverage the strengths of both paradigms. Additionally, recent
developments in Capsule Networks and Vision Transformers present promising alterna-
tives by offering improved spatial awareness and better feature representation. However,
these models also face issues such as high training complexity, stability concerns, and a
lack of standardized benchmarks.

This area is in the urgent need for models that generalize well across different MRI
acquisition protocols and scanner types, as well as the development of computationally
efficient architectures suitable for real-time clinical deployment. Furthermore, advancing
techniques such as transfer learning, semi-supervised learning, and explainable AI are
critical to overcoming current limitations.

Finally, while our review primarily focuses on brain tumor classification, the discussed
techniques have broader applications, including the diagnosis of other neurological dis-
eases such as Alzheimer’s and Parkinson’s. As the field evolves, our future research aims
to develop versatile, interpretable, and clinically adaptable AI tools to support early and
accurate diagnosis across a wide range of brain pathologies.
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