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Abstract Skin lesion segmentation identifies and outlines the boundaries of abnormal skin regions.
Accurate segmentation may help in the early detection of skin cancer. Accurate Skin Lesion Segmenta-
tion is still challenging due to different skin color tones, variations in shape, and body hairs. Moreover,
variability in the lesion appearance, quality of the images, and lack of clear skin boundaries make the
problem even harder. This paper proposes a SegNet model with spatial attention mechanisms for skin
lesion segmentation. Adding one component of spatial attention to SegNet allows the proposed model to
focus more on specific parts across the image, eventually leading to a better segmentation of the lesion
boundary. The proposed model was evaluated on the ISIC 2018 dataset. Our proposed model attained
an average accuracy of 96.25%, and the average dice coefficient equals 0.9052. The model’s performance
indicates its possible application in automated skin disease diagnosis.

Keywords: skin lesion segmentation; deep learning; spatial attention; SegNet.

1. Introduction

Skin is the largest organ of the human body that is usually directly exposed to the air.
In other words, it is the most vulnerable organ due to its exposure to ultraviolet rays
from the Sun and other environmental toxins. It leads to various skin diseases, including
skin cancer [28]. According to the International Agency for Research on Cancer (IARC),
approximately 3 330 000 new cases of skin cancer were diagnosed worldwide in 2022 [14].
Moreover, almost 60 000 people died from the disease. Furthermore, the IARC has
observed that there are 5.4 million new cases of skin cancer every year [31]. Therefore,
the World Health Organisation ranks skin cancer as one of the most prevalent and
fastest-growing cancers globally [12].

The cause of skin cancer is the proliferation or formation of skin cells unevenly or
abnormally. Depending on their type and strength, this proliferation of skin cells can
infiltrate or disseminate to other areas of the body. Based on different skin cells, the
three important types of skin cancers are basal cell skin cancer, squamous cell skin
cancer, and Melanoma. Physicians use these abnormal cells to determine the type of
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skin cancer [2, 13, 21]. Basal cell skin cancer and squamous cell skin cancer are less
dangerous as they hardly result in death. However, the most dangerous type of cancer is
Melanoma, accounting for around 75% of deaths attributed to skin cancer. Its formation
starts in melanin-producing cells that develop in melanocytes [11].

Even though Melanoma, a frequently occurring skin cancer, is lethal and the death
rate of this disease is very high, it is easily curable if the detection is made in its early
stages. According to [14], the in-time diagnosis of Melanoma decreases the mortality
rate by 90%. Some other studies reveal that there is a 95% early diagnosis (stage I of
the disease) survival rate and a 20% late discovery rate (stage IV of the disease) [19,31].
It implies that early detection increases the chances of survival and improves therapy
efficacy. For this reason, it is critical to diagnose and treat dermatoses as soon as possible.

One of the conventional methods for the diagnosis of melanoma and other skin cancer
types is the biopsy. This procedure involves taking a sample from a suspected skin
lesion to perform medical tests and determine if it is cancerous. However, undergoing
a biopsy can be challenging as it involves extracting a sample of the lesion. It can be
uncomfortable and requires time for the procedure and the subsequent analysis. The
alternative to biopsy is the visual assessment of skin lesions. Since pigmented lesions
are visible on the skin’s surface, a skilled visual examination can often detect Melanoma
at an early stage. It often involves ABCD Scale [13] that evaluates asymmetry, border
irregularity, color variegation, and lesion diameter. The ABCDE Scale [6, 24] is an
extension of the ABCD scale and adds evolving to account for changes in the lesion
over time. Similarly, Glasgow 7-point Checklist [8] includes major criteria such as a
change in size, shape, and color, along with minor criteria like inflammation, crusting or
bleeding, sensory changes, and the diameter of the lesion. These algorithms provide a
structured approach to assess skin lesions and help in the early detection of Melanoma
by identifying key warning signs.

Dermatologists often use a dermatoscope to enhance the visibility of skin lesions by
magnifying them with light. This enhanced visibility allows dermatologists to detect
early Melanoma that might be invisible to the naked eye. While dermoscopy increases
detection accuracy, the complexity of skin lesions and the sheer volume of dermoscopic
images make visual inspection potentially non-reproducible, time-consuming, and sub-
jective in medical practice. That is why advancements in computer-aided diagnostic
systems have become so important, offering more consistent and efficient analysis of
dermoscopic images [9].

Due to the above limitations of visual inspection and dermoscopy, there is a strong
motivation to develop computer-assisted diagnosis (CAD) systems to support dermatol-
ogists in their examinations. A critical aspect of CAD systems for efficiently analyzing
dermoscopic images is automatically segmenting skin lesions from dermoscopic images,
enabling more focused and efficient automated analysis of those areas. This automatic
segmentation significantly aids early skin cancer detection and diagnosis by improving
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diagnostic accuracy. However, accurate automatic segmentation of skin lesions is chal-
lenging due to three main factors: (1) Melanomas can vary greatly in shape, size, color,
texture, and skin type. Distortions and natural features like hair, air bubbles, and blood
vessels complicate the segmentation process. (2) Skin lesions often have fuzzy or un-
even edges, and the contrast between the lesion and surrounding skin can be minimal.
(3) Early algorithms were trained on relatively small datasets. Gathering large-scale
skin lesion annotations from medical experts is difficult.

Existing CAD methods to address the above limitations often give unsatisfactory
outcomes because they struggle with artifacts such as corners and low-contrast regions.
Moreover, hairs against the background remain critical challenges, making boundary
definition a difficult task [25]. On the other hand, the spatial attention mechanism uses
spatial relationships of features and creates a spatial attention map. It has been observed
that spatial attention modules are helpful in many image processing applications [22,30,
36]. Therefore, this paper proposes a transfer learning-based approach combined with
the spatial attention technique utilizing SegNet to improve the accuracy of skin lesion
segmentation.

The paper’s main contributions are summarized below:
1. The Spatial Attention module is introduced in the feature extraction process of

the encoder. This module effectively captures spatial dependencies. This module
enables the network to selectively emphasize important regions in the feature maps,
improving the understanding of fine details.

2. The bottleneck layer structure of SegNet is modified by integrating a spatial
attention module. This design increases the receptive field and allows the network to
capture contextual information, resulting in more precise segmentation.
We have evaluated the performance of our proposed method on the ISIC 2018 dataset [7,

32]. This dataset contains dermoscopic images for skin lesion analysis. It was selected
because it contains diverse skin lesion types collected from many patients. The proposed
model showed the highest segmentation accuracy on this dataset compared to the pub-
lished results on the same dataset. Hence, it proves the efficacy of the proposed model
in accurate skin lesion segmentation.

2. Background and related works

This section first describes the essential background of skin lesion segmentation tech-
niques. Subsequently, state-of-the-art skin lesion segmentation techniques are presented.

2.1. Background on skin lesion segmentation techniques

Skin lesion segmentation is pivotal in the fight against skin cancer, particularly Melanoma.
Automated image analysis technique separates suspicious moles or lesions from the sur-
rounding healthy skin in digital images, offering several benefits for dermatologists:
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• Enhanced Diagnostic Accuracy: It provides a clear picture of the lesion’s bound-
aries, allowing for a detailed analysis of its characteristics, such as color, texture,
and borders. Moreover, it helps to distinguish between benign and malignant moles,
detecting subtle variations that might be missed otherwise.

• Earlier Detection: By clearly highlighting suspicious areas, segmentation aids in
identifying melanomas at an early stage, when treatment is most effective.

• Improved Workflow Efficiency: Automating the isolation of lesions saves time
for dermatologists, allowing them to focus on interpreting the segmented data and
making diagnoses, especially for complex cases.

However, achieving accurate segmentation is challenging due to:
• Variability in Lesions: Skin lesions can vary significantly in color, shape, texture,

and size, making a one-size-fits-all approach difficult.
• Artifacts: Features like hair, blood vessels, or wrinkles can mimic lesion features

and complicate the segmentation process.
• Image Quality: Variations in illumination, camera focus, and resolution can hinder

accurate delineation.
These challenges underscore the importance of advanced techniques and tools in

improving the precision and reliability of skin lesion segmentation.

2.2. Related work on skin lesion segmentation techniques

Researchers are actively working to overcome the hurdles above. The field of skin lesion
segmentation primarily relies on two approaches:

• Traditional Image Processing Techniques: These methods use algorithms to
analyze various image properties like color intensity and texture. While they can be
effective, they often struggle with the high variability in skin lesions, limiting their
accuracy and reliability.

• Deep Learning-based Techniques: These have revolutionized the field by leverag-
ing Convolutional Neural Networks (CNNs). CNNs are trained on extensive datasets
of labeled images, allowing them to learn complex patterns and identify subtle fea-
tures that distinguish lesions from healthy skin. Due to their ability to handle the
variability in lesions and their superior accuracy, deep learning approaches are con-
sidered state-of-the-art.
The initial research on combining transfer learning and fine-tuning techniques with a

melanoma segmentation strategy based on U-net and LinkNet deep learning networks is
found in [3]. The experiments were performed on PH2, ISIC 2018, and DermIS datasets.

The method faced limitations due to the image capture device, which affected the
model’s learning of disease characteristics like resolution, color, sharpness, and lighting.
The authors claimed that the reproducibility of results is also limited by the diversity of
skin tones across different populations.
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A pyramid module incorporating lateral connections and top-down paths was used
to compensate for the loss of spatial feature information [1].

This method integrated RetinaNet and MaskRCNN, with the Melanoma ISIC 2018
and PH2 datasets serving as training and validation grounds. The method’s limitations
included segmentation accuracy being affected by high occlusions near lesions and data
class imbalance due to the absence of additional lesion data.

In [16], a fully automated multi-class skin lesion segmentation and classification ap-
proach was proposed using the most discriminant deep Learning Features and Improved
Moth Flame Optimization. The proposed methodology’s segmentation performance was
evaluated on the ISBI 2016, ISBI 2017, ISIC 2018, and PH2 datasets. However, the
computational time was one of the work’s limitations.

In response to skin lesion segmentation, a novel EIU-Net method was proposed to
tackle the challenging task [35]. Inverted residual blocks and an efficient pyramid squeeze
attention (EPSA) block were proposed as the main encoders at different stages to capture
the local and global contextual information. In contrast, atrous spatial pyramid pooling
(ASPP) was utilized after the last encoder, and the soft-pool method was introduced
for downsampling. Also, they proposed a novel method named multi-layer fusion (MLF)
module to effectively fuse the feature distributions and capture significant boundary in-
formation of skin lesions in different encoders to improve the network’s performance.
Furthermore, a reshaped decoder fusion module was used to obtain multi-scale informa-
tion by fusing feature maps of different decoders to improve the final results of skin lesion
segmentation. To validate the performance of this network, it was compared with other
methods on four public datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and
PH2 datasets. Moreover, the main metric Dice Score achieved by the proposed EIU-Net
are 0.919, 0.855, 0.902, and 0.916 on the four datasets; our EIU-Net can improve the
accuracy of skin lesion segmentation [35].

In [23], the authors introduce a novel end-to-end trainable network for skin lesion
segmentation. The proposed methodology comprises an encoder-decoder, a region-aware
attention approach, and a guided loss function. The trainable parameters are reduced
using depth-wise separable convolution, and the attention features are refined using a
guided loss, resulting in a high Jaccard index. We assessed the effectiveness of our
proposed RA-Net on four frequently utilized benchmark datasets for skin lesion segmen-
tation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2.

Integrating conventional treatment methods with deep learning frameworks to en-
hance skin lesion identification is proposed in [29]. The study used image data, hand-
crafted lesion features, and patient-centric metadata for effective skin cancer diagnosis. It
combines image features transferred from Efficient Nets, color and texture information
extracted from images, and pre-processed patient metadata to build a hybrid model.
Each model underwent training and evaluation using the ISIC 2018 and ISIC 2019
datasets widely used for skin cancer analysis. However, a notable limitation of this
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approach is the extreme imbalance in the datasets, which requires careful consideration
of appropriate evaluation metrics. Despite achieving high sensitivity (90.49%) and speci-
ficity (97.76%) on the ISIC 2018 dataset, the model’s performance may vary when applied
to different datasets or real-world scenarios with varying data imbalance or complexity
levels.

A novel deep-learning method named ChimeraNet was proposed for detecting hair
and ruler marks in skin lesion images [17]. ChimeraNet employs an encoder-decoder
architecture, incorporating a pre-trained EfficientNet and the decoder’s squeeze-and-
excitation residual (SERes) structures. However, this technique demands significant
computational resources and training time due to the complexity of the encoder-decoder
architecture and pre-trained models.

For accurate detection and delineation of hair in skin images, a researcher in [4] pro-
posed a deep learning strategy based on a hybrid network of convolutional and recurrent
layers for hair segmentation using weakly labeled data and deep encoded features. The
spatial dependencies between disjointed patches were encoded by feeding the encoded
features into recurrent neural network layers. The proposed method achieved segmenta-
tion accuracy with a Jaccard Index of 77.8 percent.

In [27], the researcher presented a machine learning-based methodology for segment-
ing skin lesions with novel borders and hair removal. The suggested approach removes
any corner boundaries from an RGB skin picture as input. The skin hairs covering the
image are then found and eliminated. The generated picture is then improved, and the
GrabCut method is used to segment lesions. The research showed that the skin lesion
segmentation method proposed in this paper had Jaccard indices of 0.77 and 0.80 on
PH2 and ISIC 2018 datasets, respectively, and Dice indices of 0.87 and 0.82, respectively.
The method failed to perform well on images with tiny affected areas. It automatically
draws a rectangle around the region using the GrabCut method. However, when we deal
with dermoscopic pictures with tiny lesions, initiating too big or too small rectangles for
over-segmentation will occur during this method’s selection process.

Segmentation accuracy degradation and occlusions in dermoscopic images constitute
the significant problems identified here. High resolution and elaborate surface structures
make conventional segmentation algorithms struggle with dermoscopic pictures. A mis-
take in segmentation accuracy may give wrong interpretations or cause detection failures,
which affect the reliability of the diagnosis results. Moreover, occlusions within these
images, such as those brought about by artifacts, hair follicles, and other foreign matter,
block important details required during skin lesion boundary determination, leading to
distortion. Therefore, it is essential to address these challenges if automated methods of
segmenting medical pictures are to be effective in the field of dermatology.

Our proposed method is the Spatial SegNet model, designed based on attention
mechanisms, which work well for increasing precision levels and handling occluded areas
in dermoscopic images.
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Fig. 1. Few examples of skin lesion samples in ISIC 2018.

3. Materials and methods

3.1. Data acquisition

In this research work, the ISIC 2018 dataset [7,32] was used to evaluate the results of our
proposed method. The ISIC 2018 dataset is a comprehensive collection of dermoscopic
images curated for skin lesion analysis. It contains 2 594 images in JPG format, each
accompanied by ground truth segmentation masks. This dataset was selected for its di-
versity and the high-quality annotations it provides, which are essential for an accurate
evaluation of segmentation methods. The images in the ISIC 2018 dataset vary signif-
icantly in lesion type and appearance, offering a robust challenge for our segmentation
model. The ground truth masks serve as a benchmark for assessing the performance
of our method, allowing us to measure the accuracy and effectiveness of the segmenta-
tion results quantitatively. Using this well-established dataset, we ensure our rigorous
evaluation is relevant to real-world clinical scenarios. Figure 1 presents some samples of
complex skin lesions in the dataset of ISIC 2018.

3.2. Proposed model

This section presents the details of our proposed method. SegNet has an encoder-decoder
structure followed by a pixel-wise classification layer. The encoder architecture of SegNet
is identical to VGG16’s convolutional layers in topology. The decoder network maps the
encoder feature maps to input resolution-sized feature maps for pixel-wise classification.
In the proposed model, spatial attention layers are added to the encoder network of the
SegNet architecture. In skin lesion images, spatial attention will help the model to focus
on essential parts or regions of interest, thereby improving accuracy in segmentation by
concentrating on relevant areas while ignoring irrelevant or noisy parts. The SegNet
decoder network has several decoders organized in a hierarchy, each corresponding to
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Fig. 2. SEGNET with Spatial Attention Architecture.

Fig. 3. Spatial Attention Module

one encoder. The correct decoders take their input feature maps and perform non-linear
upsampling using max pooling indices that they receive from their respective encoders.
It was derived from an architecture used for unsupervised feature learning [26]. Here
are many practical advantages of reusing max-pooling indices during decoding. The
architecture of SegNet with Spatial Attention is shown in Figure 2.

This model combines pre-trained VGG16 layers with spatial attention mechanisms
in the encoder network. In the following subsections, every layer is explained in detail.
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Input layer
An RGB image of a fixed size is an input to this layer. It is usually prepared after
normalization, subtracting the mean from the image or scaling all values within a certain
range. It accepts input images of size 256×256×3 (height, width, color channels).

Encoder blocks
Pre-trained VGG16 layers are used for feature extraction in the SegNet encoder net-
work. The following layers from the pre-trained VGG16 model are used in the proposed
architecture. Each convolutional block typically includes 3×3 filters with a stride of 1
and padding of 1 to extract features such as edges, textures, and color patterns. These
layers apply learnable filters to the input feature maps. The filters essentially slide across
the input, extracting features such as edges, textures, and color patterns. The number
of filters used determines the complexity and richness of the extracted features. The
activation function ReLU is applied after the convolutional layers (Conv) to introduce
nonlinearity and allow the model to capture more complex relationships in the data.
The batch normalization layers normalize the activations of the previous convolution
layer. It facilitates faster convergence during training and enhances the stability of the
learning process. The batch norm essentially standardizes the activations across different
mini-batches, mitigating the issue of internal covariate shift. The pooling layers down-
sample the feature maps spatially using max pooling. It also makes the model robust to
translations that occur very close together, while simultaneously making it less sensitive
to noise because features become more generalized.

A Spatial Attention Block is a custom module added to the model to improve the
segmentation of skin lesions (Figure 3). It acts on feature maps encoded in the previous
convolutional block borrowed from the pre-trained VGG16 model. Specifically, it is
inserted after every pooling layer within the VGG16 encoder. Its main objective is to
enhance the encoded features and focus on them. Details of each spatial attention block
are explained as follows:

• Squeeze Operation: First, feature maps are made smaller through a 1x1 convolu-
tion. This step aims to reduce the dimensionality of the space and the computational
cost incurred by modulating units to learn their interaction.

• Excitation Operation: The method spins a spatial attention map to identify vital
skin detection areas. It is achieved by applying another 1x1 convolution operation
and performing a sigmoid activation function. The resultant map assigns different
values between 0 and 1 for each part of an image, where a value of zero means least
significant and a value of one corresponds to the most significant pixels, thereby
highlighting those regions necessary for segmentation through information obtained
from prior layers.

• Element-wise Multiplication: The last part includes element-wise multiplication
of the initial feature maps with the produced spatial attention map. By doing this,
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characteristics identified as important by our attention mechanism are emphasized,
thus enabling the model to concentrate on particular parts during its segmenting
duties. Its intensified focus strengthens the model’s ability to distinguish between
unhealthy cells and their surrounding healthy tissues.

Further elaborating on the workings of the Spatial Attention Block, the first Conv2D
layer squeezes the feature maps by decreasing the channels or properties in this module.
For example, if the entry feature maps have 512 channels, the squeezing layer might
bring this down to a smaller amount, like 64 channels. Then, using the sigmoid activa-
tion function, the second Conv2D generates attention weights representing a probability
distribution that shows the importance of different spatial locations within the given
feature maps. After that, these produced attention weights are multiplied with origi-
nal features so that some features can be amplified or suppressed selectively based on
their importance towards achieving the segmentation goal. Thus, resulting scaled fea-
ture maps will center around crucial areas, helping the model capture fine details and
semantics necessary for accurate segmentation.

Decoder layers (segmentation mask reconstruction)

The decoder part takes the encoded feature maps obtained from the encoder along with
the spatial attention. It has a symmetric structure relative to the encoder and progres-
sively increases the resolution of feature maps through transpose convolution operations.
Convolution layers are attached after these upsampling operations to refine features and
learn spatial relationships between pixels. Unlike its counterpart, which extracts them,
this one aims to recover spatial information while predicting probabilities for individual
pixels to be part of skin lesions. For example, (background versus lesion) background
versus lesion class probability maps may be obtained by applying the softmax activation
function to the final output layer on a class basis. These layers receive processed fea-
tures, including effects caused by spatial attention blocks within the encoder, and then
gradually reconstruct an image that focuses on the segmentation task. They function
oppositely from encoders, i.e., starting with a high-level understanding of the picture
and adding more detailed spatial information stepwise downwards towards the lowest
level segmentation features being dealt with at every decoder block stage. Each block
typically consists of :

• Upsampling 2D: It Increases feature maps’ spatial resolution by this layer. Unlike
the traditional Conv layer, this layer learns upsampled filters that expand the feature
maps while introducing new spatial information. It allows the model to recover spatial
details lost during pooling in the encoder.

• Convolutional layers: After Upsampling layers, Conv layers are applied to refine
the features and learn the relationships between pixels similar to the encoder. They
help to combine upsampled information with high-level features from the encoder.
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• Batch Normalization layers (Batch Norm): These are used for normalizing
activations after upsampling, similar to the encoder, for better training stability.

Output layer
The final decoder output is fed to a softmax classifier layer to produce the class proba-
bilities. The softmax function produces a probability map for every pixel in the image.
This map shows how likely each pixel is to belong to a specific class (e.g., background or
skin lesion). The class with the highest probability for each pixel becomes the predicted
segmentation label.

Spatial attention mechanisms are incorporated into models designed for skin lesion
segmentation, improving the overall performance and reliability of the proposed model.
This technique combines pre-trained features, spatial attention mechanisms, and Seg-
Net’s decoder architecture to achieve accurate skin lesion segmentation. Pre-trained
VGG16 weights extract essential image features more effectively, reducing training time
and enhancing its generalization ability over new data. Considering different skin lesion
sizes and appearances, introducing a spatial attention block narrows down the essential
parts of an image, thus leading to precise skin lesion segmentation.

3.3. Evaluation metrics

To assess the performance of our proposed skin lesion segmentation method, we employed
a variety of evaluation metrics that provide a comprehensive analysis of segmentation
accuracy and quality. The metrics used in this study include the Dice Coefficient and
Binary Accuracy.

TP and FP refer to lesion pixels extracted as lesion pixels and non-lesion pixels
extracted as lesion pixels, respectively. At the same time, FN and TN represent lesion
pixels extracted as non-lesion pixels and non-lesion pixels extracted as non-lesion pixels,
respectively.

Dice Coefficient
The Dice Coefficient is an essential metric for evaluating segmentation quality. It is
calculated as the ratio of twice the area of overlap between the predicted and ground
truth masks to the sum of the areas of both masks. The Dice Coefficient ranges from
0 to 1, with a value closer to 1 indicating better segmentation accuracy. This metric is
beneficial for handling class imbalance, as it emphasizes the correct prediction of positive
samples. The dice similarity coefficient is a spatial overlap index and a reproducibility
validation metric, and it computes the similarity index between the given images.

Dice Coefficient = 2TP
(FP + TP) + (TP + FN) . (1)

Machine GRAPHICS & VISION 34(4):3–22, 2025. DOI: 10.22630/MGV.2025.34.4.1.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.1


14 Skin lesion segmentation using SegNet. . .

Accuracy
Accuracy refers to the proportion of correctly predicted pixels (lesion and non-lesion)
out of the total number of pixels. It is calculated as follows:

Accuracy = TP + TN
TP + TN + FN + FP . (2)

Precision
Precision refers to the proportion of true positive predictions among all the pixels pre-
dicted as lesions. It indicates the model’s accuracy in identifying the lesion pixels out of
all the pixels it labeled as lesions. Precision is calculated as follows:

Precision = TP
TP + FP . (3)

Sensitivity
Sensitivity, also called Recall, measures the proportion of actual positives (lesions) the
model correctly identifies. It indicates the model’s ability to detect the lesion pixels

Sensitivity = TP
TP + FN . (4)

Specificity
Specificity measures the proportion of actual negatives (non-lesions) the model correctly
identifies. It indicates the model’s ability to avoid false positives.

Specificity = TN
TN + FP . (5)

F1 Score
F1 Score is the harmonic mean of Precision and Recall (Sensitivity). It is a balanced
measure that considers both false positives and false negatives.

F1 = 2(Precision × Recall)
Precision + Recall . (6)

IOU
IOU is used to measure the overlap between two images.

IOU = TP
TP + FP + FN . (7)
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4. Experimental results

An open-source machine learning framework, TensorFlow, implements the methodology.
It is a user-friendly interface for working with deep neural networks, designed for ease
of use rather than machine-level interactions. It is a library mainly used for developing
real-time computer vision applications.

• CPU Resources:
– Environment 1: 256MB memory limit on device /device:CPU:0.
– Environment 2: XLA CPU with 16GB memory limit on device /device:XLA_CPU:0.

• GPU Resources:
– Tesla T4 GPUs: Two GPUs with 14.8GB memory each, identified as /device:GPU:0

and /device:GPU:1, with PCI Bus IDs 0000:00:04.0 and 0000:00:05.0, respec-
tively. Both GPUs have Compute Capability 7.5.

– XLA GPUs: Two GPUs with 16GB memory each, denoted as /device:XLA_GPU:0
and /device:XLA_GPU:1.

This combination of hardware configurations provided the computational capacity
necessary for efficient training and testing of deep learning models, enabling the handling
of large-scale data processing and complex model architectures.

4.1. Hyperparameters

To achieve a skin lesion segmentation model, hyperparameters shown in Table 1 are
chosen to optimize performance and manage computational resources effectively. A
learning rate of 5 × 10−6 is important as it allows for small steps to be taken by the
optimizer while minimizing the loss function. It ensures the model converges slowly and
steadily without overshooting the minimum loss function. Batch size 8 strikes a balance
between memory efficiency and accurate gradient estimation.

To validate our skin lesion segmentation method, we carried out a 5-fold cross-
validation. The steps involved partitioning a dataset into five equal sets, training on
four, and validating against the fifth set. The results are shown in Table 2. The mean
of the five-fold validation results is given in the last row of the table. The results show

Tab. 1. Hyperparameters for the proposed model.

Parameter Name Parameter Value

Learning Rate 5 × 10−6

Batch Size 8
Input Size 256, 256, 3
Optimizer Adam Optimizer
Epoch 60
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Tab. 2. Results of the proposed model with 5-fold cross validation (STD: standard deviation).

Folds IoU Dice Coefficient Precision Sensitivity Specificity Accuracy
1 0.8026 0.8980 0.8969 0.9086 0.9718 0.9657
2 0.8240 0.9242 0.9163 0.8969 0.9744 0.9616
3 0.8026 0.9051 0.9272 0.8890 0.9820 0.9611
4 0.8240 0.9022 0.9086 0.8725 0.9718 0.9631
5 0.8026 0.8965 0.9310 0.8619 0.9820 0.9611

Mean 0.8111 0.9052 0.9160 0.8857 0.9764 0.96252
STD 0.0092 0.0045 0.0155 0.0172 0.0053 0.0026

a high value of the Dice coefficient (0.9052) and segmentation accuracy (96%). The
sensitivity of the proposed model is 0.8857.

Table 3 compares the results of our proposed model against state-of-the-art published
results using the ISIC 2018 dataset. Our proposed model of skin lesion segmentation,
tested on the ISIC 2018 dataset, shows significant improvements in segmentation. The
primary comparison tools used to judge the outcomes are the Dice Coefficient and Binary
Accuracy. The high value of the Dice Coefficient shows more similarity of the predicted
results with the ground truth mask.

Adding spatial attention to the SegNet architecture achieves better skin lesion seg-
mentation results. Spatial attention assigns weights to each pixel, highlighting the areas
of interest and allowing the model to distinguish between lesion and non-lesion regions.
This improves the segmentation accuracy as the model can focus on the spatial locations
with features relevant to skin lesions, such as irregular shapes and varying pigmentation
over background noise.

The SegNet with spatial attention model quantitatively improved the Dice similarity
coefficient, IoU, and accuracy scores. These improvements are significant compared
to the other segmentation models (Table 3). Figure 4 shows skin lesion segmentation
results. The segmentation output looks better in the Figure 4, and lesion boundaries are
more precise and consistent.

Tab. 3. Comparative analysis with state-of-the-art techniques.

Model Dataset Split Parameters [106] Accuracy Dice Coefficient
TMU Net [5] 70% training, 10% validation, and 20% testing – 0.9603 0.905
UNeXt [33] 80% training, 20% testing 1.47 0.9586 0.8873
FAT-Net [34] 70% training, 10% validation, and 20% testing 30 0.9578 0.8903
CPFNET [10] 5-fold cross-validation 43 0.9496 0.8769
DAGAN [18] 2296 images for training, 300 images for testing. 54 0.9324 0.87707
CKDNet [15] – 51 0.9492 0.8779
REDAUNet [20] 70% training, 10% validation, and 20% testing 47.77 0.9444 0.902
SA SegNet (Ours) Five-Folds Cross-Validation. 29.6 0.9625 0.9052
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a b c
Fig. 4. Some of the segmented images. Vertically: five cases. Horizontally: (a) original image;

(b) predicted mask, Dice = 0.85; (c) overlay image.
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4.2. Impact of batch size and learning rate

In this experiment, we analyzed the influence of hyperparameters on the model perfor-
mance. This analysis aims to understand the effect of batch size and learning rate on
the Dice Coefficient and the Accuracy metrics. In these experiments, the whole dataset
is divided in the ratio of 0.7:0.1:0.2 for training, validation, and testing, respectively.

The Table 4 presents results for the model at various initial learning rates and their
effect on the Dice Coefficient and Accuracy. The learning rate of 1 × 10−6 is too low for
the model to learn efficiently, as it yields the lowest performance, with a Dice coefficient
of 0.8611 and an accuracy of 0.9395. A learning rate of 1 × 10−5 performs the best with
the highest value of the Dice coefficient of 0.9053, an accuracy of 0.9626. Thus, it infers
that this is the ideal rate of learning and generalization. If the learning rate is increased
to 1 × 10−4, the performance decreases slightly, as the Dice coefficient goes to 0.8794,
and an accuracy of 0.9527 is achieved. This shows that although the model performs
well, the learning rate is too large for optimal training. As the learning rate is increased
to 1 × 10−3, the model training is the worst, with a Dice coefficient of 0.8761 and an
accuracy of 0.9436 on the testing dataset. It may indicate that the model is converging
too fast and missing some finer details in the data. The learning rate of 1 × 10−5 is the
most effective, being the best in segmentation and classification tasks, while increasing
or decreasing the learning rate worsens the performance.

Batch size determines the number of samples in the training dataset to update the
parameters. Increasing the batch size means fewer weight updates in an epoch. Hence,
memory and computational requirements are lower for smaller batch sizes due to the
smaller number of samples per update. However, for smaller batch sizes, the effect
of noise and variance of the loss gradient will be more on the weight updates of the
model. The Table 5 compares the model’s performance across different batch sizes in

Tab. 4. Comparison of Dice Coefficient and Accuracy for different initial learning rates

Initial Learning Rate Dice Coefficient Accuracy
1 × 10−6 0.8611 0.9395

1 × 10−5 (Ours) 0.9053 0.9626
1 × 10−4 0.8794 0.9527
1 × 10−3 0.8761 0.9436

Tab. 5. Comparison of model performance for different batch sizes.

Batch Size Test Dice Coefficient Test Accuracy

4 0.9005 0.9578
8 (Ours) 0.9053 0.9626

12 0.8967 0.9570
16 0.8733 0.9509
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Tab. 6. Comparison of models based on model’s variations.

Model Test Dice Coefficient Test Accuracy

SegNet only 0.8977 0.9581
Partial Removal of Spatial Attention 0.8986 0.9561

Removal of Batch Normalization 0.8827 0.9505
Spatial Attention SegNet (Ours) 0.9052 0.9625

terms of Dice Coefficient and Accuracy. Comparing the dice coefficient and accuracy for
various batch sizes, a batch size of eight is optimal. The model performs best with a
Dice coefficient of 0.9053 and an accuracy of 0.9626. The performance degrades as the
batch size increases from eight, and the dice coefficient and accuracy decrease. Finally,
with the batch size of 16, the performance significantly drops (Dice coefficient of 0.8733
and accuracy of 0.9509), which implies that the bigger batch sizes may preclude the
model’s ability to converge effectively and even generalize well. The overall results,
however, indicate that batch size eight is more likely to bring equilibrium to the model’s
computing efficiency and practical utility. Therefore, it is the most suitable option for
this experiment.

4.3. Ablation experiments

In this section, we perform an ablation study on the proposed model. We have studied
the effect of the spatial attention layer and batch normalization layer.

The Table 6 showcases the comparison of the performances of the different versions of
the models. The core of the system is the SegNet architecture, and performance can be
greatly enhanced by the introduction of some components, like batch normalization and
spatial attention. The spatial attention technique is a method for improving segmen-
tation accuracy, which allows the model to focus on relevant areas of the input.In our
model we have included another highly significant layer, which is called batch normal-
ization (BN). By doing BN the input to each layer, the result is the stabilization of the
process of learning and reduction of internal co-variate shifts. An ablation study shows
that when batch normalization is taken away, both the Dice coefficient and the accuracy
fall drastically. The removal of batch normalization from the model greatly decreases the
model’s accuracy, thus proving its importance in ensuring a successful learning period.

Our model, proposed in this paper, combines spatial attention and batch normaliza-
tion layers. Both layers in the model provides best Dice coefficient of 0.9052 and the
highest accuracy of 0.9625. Hence, it is clear that spatial attention helps the model pick
the salient parts of the image, while batch normalization ensures the model’s training
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runs smoothly and can generalize well, thereby enhancing both segmentation and clas-
sification performance. The implementing these layers is essential for the robustness,
accuracy, and capacity to deal with the complexity of the patterns in the data.

5. Conclusion and future work

This paper provides a detailed framework for the proposed skin lesion Segmentation
model. Our proposed approach uses SegNet architecture combined with spatial atten-
tion layers. Encoder layers are taken from the pre-trained model of VGG16. Our model
showed better segmentation accuracy and improved lesion boundary delineation pre-
cision. It is evident from Table 3 that the proposed model performed better on the
ISIC 2018 dataset than other published state-of-the-art models. We have achieved a
dice coefficient of 0.9052 and a segmentation accuracy of 0.9625.

An important aspect of future work is the incorporation of multimodal data. Com-
bining dermoscopic images with clinical information provides a more holistic approach
to analyzing skin lesions; thus, this approach may increase diagnostic performance by
improving segmentation accuracy. This kind of approach uses different data strengths
to give a more precise and reliable diagnosis. It is also essential to build real-time seg-
mentation systems for clinical purposes. These systems need to work efficiently on edge
devices or mobile platforms to be accessible for use in different clinical environments.
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Abstract In this paper we propose a novel approach to low-light image enhancement using a trans-
former-based Swin-Unet and a perceptually driven loss that incorporates Learned Perceptual Image
Patch Similarity (LPIPS), a deep-feature distance aligned with human visual judgements.

Specifically, our U-shaped Swin-Unet applies shifted-window self-attention across scales with skip
connections and multi-scale fusion, mapping a low-light RGB image to its enhanced version in one
pass. Training uses a compact objective – Smooth-L1, LPIPS (AlexNet), MS-SSIM (detached), inverted
PSNR, channel-wise colour consistency, and Sobel-gradient terms – with a small LPIPS weight chosen
via ablation.

Our work addresses the limits of purely pixel-wise losses by integrating perceptual and structural
components to produce visually superior results. Experiments on LOL-v1, LOL-v2, and SID show that
while our Swin-Unet does not surpass current state-of-the-art on standard metrics, the LPIPS-based
loss significantly improves perceptual quality and visual fidelity.

These results confirm the viability of transformer-based U-Net architectures for low-light enhance-
ment, particularly in resource-constrained settings, and suggest exploring larger variants and further
tuning of loss parameters in future work.

Keywords: low-light image enhancement, U-Net, mean opinion score, LPIPS.

1. Introduction

As shown below, numerous software frameworks, models, and methodologies have been
proposed for the low-light enhancement task. Nevertheless, we extend this research by
examining three persistent gaps – architecture, efficiency, and perception. Pure trans-
former U-Nets such as Swin-Unet [3] have been scarcely explored in this context, yet their
hierarchical shifted-window attention is well suited to the joint global–local reasoning
required by complex illumination. Moreover, state-of-the-art models almost exclusively
optimise pixel-level errors, which correlate poorly with human judgement; colour shifts
and texture flattening therefore persist. A composite loss that blends classic terms with
a perceptual metric (LPIPS) [48] is needed to align optimisation with visual quality. In
addition, many high-performing pipelines rely on heavy diffusion stages or multi-branch
designs, whereas a lightweight, single-stage Swin-Unet promises a superior accuracy-
efficiency trade-off – crucial for real-time or mobile applications.

These observations motivate our investigation of a perceptually optimised Swin-Unet
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that couples the representational power of hierarchical transformers with an LPIPS-aug-
mented composite loss, aiming to reduce residual artefacts while retaining computational
frugality.

1.1. Related Works

Enhancing photographs captured in severe darkness has matured from handcrafted
tone-mappers to sophisticated learning pipelines, yet every generation still negotiates
its own trade-offs between fidelity, robustness, and speed. Early grey-level transforma-
tions and Retinex-based formulations [9, 10, 13, 14, 17, 27, 44] adjust global brightness
through fixed, analytical rules that remain attractive for real-time use but inevitably
falter when illumination varies across a scene, leaving local noise and colour bias un-
resolved. Retinex theory itself – explicitly separating reflectance from illumination –
continues to underpin most modern networks: Retinex-Net [37] dissects, corrects, and
re-merges the two layers in three consecutive modules, achieving joint denoising and
brightening, although its separate branches occasionally amplify artefacts if any mod-
ule under-fits. Diff-Retinex [43] replaces convolutions with Transformer Decomposition
Networks (TDN) and diffusion-style adjusters that offer smoother global illumination at
the cost of substantial inference latency introduced by the diffusion iterations. Alterna-
tive encoder–decoder designs regress a coarse illumination map and refine it in a single
pass; their simplicity improves throughput but risks oversmoothing high-frequency de-
tail. Two-stream recurrent models mitigate this blur by letting a secondary branch track
salient textures, yet the recurrent roll-out lengthens both memory use and training time.

To preserve the fine structure of the image, in the subsequent work the multi-scale
processing and attention was introduced. Unrolled optimisation with residual blocks and
parallel multi-resolution streams [19, 45] retains context over very large receptive fields,
but the extra resolution hierarchy enlarges GPU memory consumption. CDAN [31]
adds dense connectivity and channel-attention to a U-Net skeleton, improving colour
consistency and perceptual sharpness while inflating parameter count. SNR-aware at-
tention [40] and residual dense attention units [50] explicitly weight features by esti-
mated noise statistics, reducing information loss on consumer cameras, yet the reliance
on a reliable SNR estimate can degrade accuracy when sensor characteristics change.
Laplacian-pyramid diffusion in PyDiff [52] progressively samples higher resolutions so as
to suppress global RGB shifts with fewer parameters than classic diffusion; nevertheless,
its iterative denoiser remains too heavy for battery-powered hardware.

The field is therefore witnessing a parallel push toward lightweight yet perceptu-
ally solid designs. LYT-Net [1] splits the Y and UV channels into separate paths with a
Channel-Wise Denoiser and a ViT-based fusion block, reaching mobile-class throughput;
its dependence on an explicit YUV conversion, however, complicates end-to-end RAW
processing pipelines. Self-DACE [38] alternates Adaptive Adjustment Curves with a
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CNN-based denoiser in a two-stage loop and learns solely from unpaired data, gener-
alising across cameras while effectively doubling runtime. Other lightweight attempts
compress feature maps aggressively but tend to underperform on real photographs where
noise, colour cast, and motion blur co-occur.

Collectively, these developments yield a toolbox that can brighten images, suppress
grain, and restore colour, yet three persistent challenges remain. First, colour distortion
survives in regions where statistical priors deviate from the true illumination spectrum.
Second, texture fidelity still drops whenever a network relies exclusively on pixel-wise
losses such as L1 or MSE, encouraging overly smooth outputs. Third, computational
overhead – either from deep cascades, recurrent loops, or diffusion steps – prevents many
state-of-the-art models from running interactively on edge devices.

Transformers equipped with windowed self-attention offer a plausible route toward
closing these gaps. The Swin Transformer family [21] combines convolution-like locality
with long-range context in a hierarchical fashion that scales linearly with image size,
and thus promises a more favourable accuracy–efficiency balance than global-attention
ViTs. Embedding Swin blocks in an encoder–decoder topology inherits the strong re-
construction ability of U-Nets while eliminating the multi-branch overhead common in
Retinex cascades or the multi-step burden of diffusion. Such a design can devote its full
capacity to suppressing colour shifts and preserving texture within a single pass, poten-
tially delivering competitive perceptual quality at a fraction of the compute budget. The
present work therefore positions a Swin-based U-Net at the centre of the low-light en-
hancement landscape, evaluating it against both heavyweight perceptual optimisers and
recent lightweight specialists, and highlighting where transformer attention can bridge
the longstanding trade-off between fidelity, robustness, and real-time performance.

2. Experimental setup

2.1. Datasets

To comprehensively evaluate our proposed method for low-light image enhancement,
we utilized two prominent benchmark datasets specifically designed for addressing chal-
lenges associated with underexposed photography: the LOL and SID datasets. These
datasets provide paired low-light and normal-light images, enabling supervised learning
and detailed performance assessments. Additionally, to determine the most effective ap-
proach to data integration, we explored various dataset combinations, consistently using
LOL for training, while systematically varying the inclusion and selection strategy of
SID images (single darkest, three darkest, random selection, or none).

2.1.1. LOL Dataset
The LOL dataset [37] consists of pairs of images captured under low-light and normal-
light conditions, primarily designed to support research focused on image enhancement
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techniques. It includes 500 image pairs, of which 485 are used for training and 15
for testing. Most images in this dataset depict indoor scenes and maintain a uniform
resolution of 400 × 600 pixels. Additionally, we employed an expanded version, known
as LOL-v2, which provides 689 training and 100 testing image pairs. LOL-v2 notably
enhances dataset variability by incorporating both synthetic and real-world low-light
scenarios, allowing for more robust evaluations of algorithmic performance under diverse
conditions.

2.1.2. SID Dataset
The See-in-the-Dark (SID) dataset [4] is a comprehensive collection of raw, short-ex-
posure images accompanied by corresponding long-exposure reference images, tailored
specifically for low-light enhancement studies. It comprises 5094 image pairs captured
under various illumination conditions using two different professional-grade camera sys-
tems. This dataset uniquely offers multiple exposure levels per scene, providing valuable
insights into the effectiveness of enhancement methods across varying degrees of dark-
ness. In our experiments, we specifically evaluated multiple strategies for incorporating
SID data into the training process. These strategies included selecting only the darkest
exposure per scene, the three darkest exposures, random exposure selection, and exclud-
ing SID data entirely. This allowed us to rigorously investigate the impact of different
dataset configurations on model performance and generalizability.

2.2. Proposed method

The goal of this work is to investigate whether a carefully tuned and loss-optimised
lightweight architecture based on Swin-Unet [3] can achieve performance competitive
with current state-of-the-art models for low-light image enhancement. In contrast to
many recent approaches that incorporate multiple complex modules or multi-stage de-
signs [1, 31, 52], we focus on a streamlined and efficient model that leverages the global
context modelling capabilities of Vision Transformers while maintaining the desirable
properties of U-Net’s encoder-decoder structure.

We hypothesize that, with the right combination of architectural design and a com-
posite loss function tailored to perceptual and structural fidelity, a pure transformer-
based model can deliver good results on both synthetic and real-world low-light datasets.

2.2.1. Model Architecture
Our proposed model builds upon Swin-Unet [3], a pure Transformer architecture origi-
nally developed for medical image segmentation. The architecture follows a symmetric
U-shaped design composed entirely of Swin Transformer blocks [21], organized into an
encoder, bottleneck, and decoder, interconnected through skip connections.

The encoder consists of a patch embedding layer followed by four hierarchical stages
of Swin Transformer blocks and patch merging layers, progressively reducing spatial
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resolution while increasing feature dimensionality. The bottleneck module operates at
the lowest resolution, capturing deep contextual features.

The decoder mirrors the encoder structure, utilizing patch expanding layers and Swin
Transformer blocks to restore spatial resolution and refine the feature representations.
Skip connections are introduced at each level to recover fine-grained spatial information
lost during downsampling.

Unlike traditional CNN-based U-Nets, Swin-Unet replaces convolutional layers with
self-attention mechanisms using shifted windows. This allows the model to efficiently
capture both local details and long-range dependencies without excessive computational
overhead. A final upsampling module brings the output back to the original image
resolution, followed by a 1×1 convolution to produce the enhanced image.

2.2.2. Loss function
The most commonly used loss functions in low-light image enhancement tasks are the
Mean Absolute Error (MAE), often referred to as L1-loss, and the Mean Squared Error
(MSE), also known as L2-loss. These functions have been widely adopted due to their
simplicity and effectiveness in pixel-wise intensity comparison.

Recent top-tier works, such as [52] and [2], prominently utilize the L1-loss, highlight-
ing its continued relevance in state-of-the-art models. The formula for L1-loss is given
by:

L1 = 1
N

N∑
i=1

|ŷi − yi| , (1)

where ŷi denotes the predicted pixel value, yi is the corresponding ground-truth value,
and N is the total number of pixels. For comparison, the L2 loss (mean squared error,
MSE) is defined as:

LMSE = 1
N

N∑
i=1

(ŷi − yi)2
. (2)

While L2-loss penalizes large deviations more heavily, leading to smoother outputs,
L1-loss is less sensitive to outliers and often results in sharper reconstructions. This dis-
tinction makes L1-loss preferable in tasks requiring better preservation of image details.

In addition to pixel-wise losses, perceptual losses have gained popularity for improving
the visual quality of enhanced images. In [31], the authors utilize a combination of
MSE and perceptual loss based on a pre-trained VGG19 network. The perceptual loss
compares feature maps from different layers of the VGG19 network for both generated
and reference images, ensuring better high-level feature alignment. The perceptual loss
is formulated as:

LVGG = 1
N

N∑
i=1

∥VGG(Îi) − VGG(Ii)∥2
2 , (3)
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where Îi and Ii represent the predicted and ground truth images, respectively, and V GG
denotes the feature extraction function using the VGG19 network.

The composite loss function used in this work combines MSE and perceptual loss as
follows:

Lcomposite = LMSE + λLVGG , (4)

where λ is a hyperparameter balancing the contributions of the two components. Ac-
cording to the authors, λ = 0.25 yields optimal results.

Similarly, [8] proposes a loss function designed for low-light image enhancement in
both HVI and sRGB colour spaces; we will refer to it as FN-loss in the remainder of this
paper to simplify the nomenclature. The total loss L is defined as:

L = λc · l(ÎHVI, IHVI) + l(Î , I) , (5)

where ÎHVI and IHVI are the predicted and ground truth images in the HVI colour space,
Î and I are the predicted and ground truth images in the sRGB colour space, and λc is
a weight balancing the two losses.

The loss function l for each colour space consists of multiple components:

l(X̂, X) = λ1L1(X̂, X) + λeLe(X̂, X) + λpLp(X̂, X) , (6)

where: L1 loss denotes the pixel-wise L1 loss, Le is the edge loss encouraging edge
preservation in the enhanced image, and Lp is the perceptual loss, ensuring perceptual
similarity by comparing features extracted by a pre-trained network (e.g., VGG19).
λ1, λe, and λp are weights controlling the contributions of the respective loss components.

The proposed approaches demonstrate the efficacy of combining multiple loss compo-
nents, including pixel-wise, edge, and perceptual losses, to achieve enhanced brightness,
colour accuracy, and edge sharpness in low-light image enhancement tasks.

A notable example of an advanced loss function design is presented in [1]. The
authors of LYT-Net used a hybrid loss function that combines multiple components to
jointly optimise image brightness, perceptual quality, structural similarity, and colour
fidelity. Their loss function can be expressed as:

Ltotal = LS + α1LPerc + α2LHist + α3LPSNR + α4Lcolour + α5LMS-SSIM , (7)

where: LS denotes the Smooth L1 loss, applying a linear or quadratic penalty depending
on the error magnitude to handle outliers effectively, LPerc is the perceptual loss enforcing
high-level feature consistency via VGG feature maps, LHist is the histogram loss aligning
intensity distributions of prediction and ground truth, LPSNR is the PSNR-based loss
penalizing deviations in peak signal-to-noise terms, Lcolour is the colour fidelity loss
minimizing channel-wise mean differences, and LMS-SSIM is the multiscale structural
similarity loss preserving structure across scales.
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Each component in this hybrid loss function addresses a specific aspect of the en-
hancement problem, ensuring a balanced optimization process. This approach demon-
strates how combining multiple loss terms can lead to excellent results in low-light image
enhancement.

Both methods, [1] and [20], achieve excellent performance, particularly on synthetic
datasets like LOLv2. However, models trained with simpler loss functions, such as the
L1-loss used in [52], tend to perform better on real-world datasets. This suggests that
while advanced hybrid loss functions can improve performance on controlled datasets,
simpler losses might generalize better in real-world scenarios. The superior real-world
performance of [52] is likely influenced by the entire network architecture and training
optimization strategy, including the choice of loss function.

In [20], the authors employ a vector quantization-based method for low-light image
enhancement and define separate loss functions across three stages:
Stage I Loss: The goal is to train a normal-light encoder, decoder, and codebook using

a combination of:
LStage I = Lrecon + βLvq , (8)

where Lrecon is the L2-loss (Mean Squared Error) ensuring pixel-wise reconstruction
accuracy, and Lvq is the vector quantization loss, which penalizes differences between
the encoded and quantized features.

Stage II Loss: To bridge the gap between low-light and normal-light feature spaces,
a distillation loss is introduced, alongside a query loss that optimises the matching
process:

LStage II = Ldistill + Lquery , (9)

Here, Ldistill minimizes the feature-level discrepancy using L1-loss, while Lquery en-
sures accurate codebook item selection by aligning distance maps between features
and codebook/query items.

Stage III Loss: In the final stage, a fusion branch combines features from different
scales, and a brightness-aware attention module is employed to refine the enhanced
image. The total loss in this stage is an L1-loss defined as:

LStage III = ∥Irec − IN ∥1 (10)

where Irec is the reconstructed image, and IN is the ground truth normal-light im-
age. Influence when parameters change: Eq. (10) has no explicit hyperparameters;
if weighted by λ3 in the total loss, increasing λ3 scales the gradient ∂L/∂Irec =
λ3 sign(Irec − IN ) and enforces pixel fidelity (typically higher PSNR/SSIM, smoother
textures), while decreasing λ3 lets perceptual/structural terms dominate (often sharp-
er appearance with slight PSNR/SSIM trade-off). Replacing ∥ · ∥1 with ∥ · ∥2

2 would
penalize large residuals more (more denoising/smoothness, potential edge blurring);
keeping L1 preserves edges and is outlier-robust. Stronger brightness-aware attention
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concentrates updates in dark regions (better shadow recovery, risk of halos if ex-
cessive); weaker attention spreads updates (fewer artifacts, possible residual shadow
noise). We use plain L1 (λ3 = 1 unless stated) and control the overall balance
via Eq. (11).
To better align the network output with human visual perception, we augment classic

pixel-wise objectives with a deep-feature component based on LPIPS [48]. The total
training signal is defined as:

Ltotal = αSLS + αP LLPIPS + αM LMS-SSIM + αN LPSNR + αCLcolour + αGLGrad , (11)

where LS is the Smooth-L1 loss, LMS-SSIM is the multi-scale structural similarity loss
(computed with detached gradients), LPSNR is the inverted PSNR loss, Lcolour penalizes
differences in channel-wise mean values, and LGrad enforces edge consistency using Sobel-
based gradients. The perceptual term LLPIPS uses the metric introduced by Zhang et
al. [48], based on a frozen AlexNet backbone [16]. During training, both prediction and
ground-truth images are forwarded through the LPIPS network in no grad mode, after
being rescaled from [0, 1] to [−1, 1], as required by the implementation. The choice of
the LPIPS loss weight αP was also subject to ablation, as we evaluated different values
to balance perceptual quality and training stability. A comprehensive comparison of
alternative loss functions and weight configurations is presented later in the paper.

2.2.3. Training setup
The complete pipeline is implemented in PyTorch 2.3 [28] with native AMP (Auto-
matic Mixed Precision), uDNN (CUDA Deep Neural Network library) [26], bench-
marking enabled, weight-initialization utilities from timm [25], and tensor rearrange-
ments from einops [29, 30]. The Swin-Unet backbone is realised as a pure-attention
U-Net: a patch-embedding stem feeds four encoder stages that alternate shifted-window
multi-head self-attention, MLPs and residual connections, each stage halving the spatial
resolution through patch merging; a bottleneck attends at the coarsest scale; four sym-
metric decoder stages then perform patch expansion while concatenating the correspond-
ing encoder activations; an expand-by-four layer followed by a 1×1 projection produces
the RGB output. Three capacities are explored by crossing initial widths 256, 384, 512
with depth patterns 2–4–6–2, 2–4–8–2 and 2–6–12–4, giving nine architectural variants.

Training uses the LOL-v1 split, both LOL-v2 subsets and the SID corpus; for SID
only the darkest exposure of every scene is paired with its long-exposure reference and
the official Part-1 / Part-2 division is kept for training and validation. All images are con-
verted to linear [0, 1], randomly flipped and rotated by multiples of 90◦, then partitioned
into non-overlapping 256×256 crops that serve as individual samples; evaluation runs on
a single uncropped patch without test-time augmentation. Four supervision regimes are
tested: the hybrid LYT objective, the six-term LPIPS-augmented loss of Eq. (11) with
αP ∈ 0.1, 0.2, 0.5, pure MSE and the colour-space FN-loss of Feng et al [8]. In every
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case AdamW starts at 1×10−4, warms up linearly for five epochs, decays cosinely to
1×10−6, applies weight-decay of 10−4, clips the gradient norm to 1.0 and accumulates
two mixed-precision micro-batches, yielding an effective batch of sixteen patches. Each
run spans one hundred epochs and the checkpoint with the lowest mean validation loss
over LOL-v1, LOL-v2-real and LOL-v2-synthetic is retained.

All experiments were run on a single NVIDIA RTX 4090. Mini-batch size was ad-
justed per model to saturate GPU memory; for the 512-channel backbone this meant
a batch size of 1, which noticeably slowed iterative testing. Given the tight hardware
and time budget – and the wish to cover nine capacities and four loss functions – some
hyper-parameters (e.g. the LPIPS multiplier) were fixed to representative values instead
of being exhaustively tuned. Access to stronger hardware would allow a broader sweep
over embed width, window size and loss weights, leading to a more thoroughly optimised
model.

3. Experimental results

In this section, we present extensive experimental validation of our proposed Swin-Unet-
based method for low-light image enhancement. We systematically evaluated the perfor-
mance impact of key architectural choices, different strategies for incorporating supple-
mentary datasets, and various loss functions. To directly address the reviewer’s concern
and isolate sources of improvement, we conducted two complementary ablations: (i)
with the architecture and data held fixed, we varied only the loss (MSE, FN-loss, LYT,
and LPIPS-weighted variants); and (ii) with the loss and data held fixed, we varied only
the architecture (embedding dimensions and transformer depths). The baseline for all
comparisons was the original Swin-Unet model configuration with embedding dimension
512 and hierarchical depths of 2-4-8-2, which previously demonstrated promising results
in similar vision tasks. The LOL-v1 and LOL-v2 datasets (both synthetic and real sub-
sets) were utilized as primary benchmarks. We specifically investigated the impact of
embedding dimensions and transformer depths, dataset integration strategies (particu-
larly regarding the SID dataset), and diverse loss function formulations, including Mean
Squared Error (MSE), FN-loss, LYT loss, and our proposed LPIPS-based perceptual
loss function. The evaluation metrics used were Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR), commonly adopted standards for image enhance-
ment assessment.

3.1. Comparative analysis

Initially, we focused on the effective use of the SID dataset within the training pipeline.
Four distinct approaches were tested using the optimal Swin-Unet architecture (embed-
ding dimension 512, depths 2-4-8-6) and LYT loss: (1) selecting the single darkest image
per scene from SID, (2) selecting the three darkest images, (3) randomly choosing SID
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Tab. 1. Comparison of SID dataset integration strategies using LYT loss.

SID Strategy SSIM LOL-v1 PSNR LOL-v1 SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth
Single darkest 0.829 21.43 0.834 22.55 0.897 22.46
Three darkest 0.799 23.16 0.825 22.63 0.897 22.40
Random 0.772 22.53 0.810 22.58 0.904 23.30
No SID 0.780 22.13 0.826 23.67 0.902 22.61

Tab. 2. Effect of embedding dimensions and depths (LYT loss, single darkest SID).

Embed dim / depths SSIM LOL-v1 PSNR LOL-v1 SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth
512 / 2-4-8-2 0.829 21.43 0.834 22.55 0.897 22.46
512 / 2-4-6-2 0.762 20.00 0.803 21.56 0.883 20.84
384 / 2-4-6-2 0.759 20.91 0.792 21.10 0.872 20.52
384 / 2-6-12-4 0.784 21.47 0.806 21.74 0.895 22.52

images, and (4) completely excluding SID. Table 1 summarizes these experiments, clearly
indicating that leveraging the single darkest SID image achieved consistently superior
results. This strategy yielded an SSIM = 0.829 and PSNR = 21.43 for LOL-v1, and
SSIM = 0.834 and PSNR = 22.55 for LOL-v2-real, significantly outperforming alterna-
tive approaches.

The observed differences between SID usage strategies highlight that carefully se-
lecting SID images based on luminance intensity notably improves performance and
training stability. Because the loss and architecture were held fixed here, these gains
are attributable to the data integration strategy rather than the perceptual loss choice.
Random SID selection, although performing well on synthetic datasets, showed reduced
consistency across real-world benchmarks.

We then explored varying model configurations by adjusting the embedding dimen-
sions and transformer depths, again utilizing the optimal SID selection (single darkest
image). We compared embedding dimensions of 384 and 512, and various depth config-
urations, specifically 2-4-6-2 and 2-6-12-4. As Table 2 demonstrates, significantly lower
embedding dimensions (384) substantially decreased SSIM and PSNR values, indicat-
ing insufficient representational capacity. Thus, such configurations were excluded from
further experiments.

Under a fixed loss (LYT) and data strategy, increasing architectural capacity from
depths 2-4-6-2 to 2-4-8-2 at embed = 512 improved SSIM/PSNR by +0.067/+1.43 (LOL-
v1), +0.031/+0.99 (LOL-v2-real), and +0.014/+1.62 (LOL-v2-synth). These deltas are
larger than those observed when swapping perceptual losses under a fixed architecture
(see below), indicating that most SSIM/PSNR gains stem from the architecture.

Next, we assessed several loss functions to determine their efficacy. Specifically, we
compared MSE, FN-loss, LYT loss, and our perceptual LPIPS-based loss with varying
LPIPS multipliers (0.1, 0.5, and 1.0). Results summarized in Table 3 illustrate that
simpler loss functions such as MSE and FN-loss underperformed notably, with MSE
consistently lowest due to its exclusive pixel-level error penalization, which leads to
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Tab. 3. Performance comparison of different loss functions.

Loss Function SSIM LOL-v1 PSNR LOL-v1 SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth
LYT 0.829 21.43 0.834 22.55 0.897 22.46
LPIPS (0.1) 0.827 21.77 0.826 22.60 0.897 22.42
LPIPS (0.5) 0.789 21.13 0.827 22.32 0.895 22.58
LPIPS (1.0) 0.789 21.05 0.799 20.46 0.871 21.72
FN-loss 0.798 21.41 0.809 21.09 0.882 22.11
MSE 0.675 19.27 0.722 18.12 0.832 19.00

Tab. 4. NIQE and BRISQUE scores for the four loss functions (lower is better).

Loss Dataset NIQE BRISQUE
MSE LOL-v1 5.20 19.26
MSE LOL-v2-real 5.46 20.90
MSE LOL-v2-synth 5.02 15.84
FN-Loss LOL-v1 7.14 22.56
FN-Loss LOL-v2-real 7.36 25.78
FN-Loss LOL-v2-synth 6.30 17.36
LYT LOL-v1 5.79 15.36
LYT LOL-v2-real 6.16 18.00
LYT LOL-v2-synth 5.85 16.42
LPIPS LOL-v1 5.55 17.18
LPIPS LOL-v2-real 5.97 19.23
LPIPS LOL-v2-synth 5.58 16.08

overly smooth and detail-deficient images. Conversely, LYT and LPIPS-based losses
yielded the highest results, largely attributed to their composite nature – incorporating
pixel-wise accuracy, perceptual quality, structural similarity, and colour fidelity, thus
better aligning with human visual preferences.

With the architecture held constant (embed = 512, depths 2-4-8-2) and the same
data strategy, LPIPS at a small weight (0.1) slightly increased PSNR relative to LYT
while keeping SSIM essentially unchanged: +0.34 dB / −0.002 (LOL-v1) and +0.05 dB
/ −0.008 (LOL-v2-real); results on LOL-v2-synth were virtually tied (−0.04 dB / 0.000).
Heavier LPIPS weights (0.5–1.0) reduced effectiveness, emphasizing the importance of
balancing perceptual and pixel-level constraints. These comparisons show that while
architectural capacity dominates fidelity (SSIM/PSNR), a lightly weighted LPIPS term
can nudge optimization toward slightly better PSNR without sacrificing SSIM.

The four representative checkpoints were re-evaluated with the no-reference percep-
tual metrics NIQE [23] and BRISQUE [22] (Tab. 4). NIQE measures the deviation of an
image’s natural-scene statistics from a model learned on pristine photographs, whereas
BRISQUE regresses locally normalized luminance and contrast statistics to subjective
quality scores. Lower values in both cases correspond to higher perceptual quality.
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Across the entire evaluation spectrum, LYT and LPIPS deliver noticeably better
NIQE and BRISQUE scores than the multi-component FN-Loss of Feng et al., combining
L1, edge, and perceptual terms in both sRGB and HVI colour spaces. LPIPS attains
the lowest NIQE values among the perceptual objectives, whereas LYT secures the best
BRISQUE on LOL-v1 and LOL-v2-real, with LPIPS edging ahead on the synthetic
subset. Because the architecture was fixed in these comparisons, these perceptual gains
can be attributed primarily to the loss design.

Surprisingly, the plain MSE loss performs very competitively – particularly on LOL-
v2-synth, where it records the overall best NIQE of 5.02. This suggests that strict pixel
fidelity can suppress subtle non-linear artefacts sometimes introduced by perceptual
losses; such artefacts are often imperceptible to the human eye yet penalised by statistical
quality metrics. In summary, perceptually driven losses (LYT and LPIPS) still provide
clear gains over FN-Loss, but a well-tuned MSE baseline remains a strong contender
when judged solely by no-reference measures.

Detailed training convergence (Fig. 1) shows that, under the same architecture, the
LYT loss and LPIPS with weight 0.1 both stabilize training and maintain superior
PSNR/SSIM across epochs, with LPIPS slightly stronger in later epochs. Increasing the
LPIPS weight reduces effectiveness, underscoring the need to balance perceptual and
pixel-level terms. FN-Loss converges more gradually but remains competitive, whereas
MSE lags throughout. Convergence plateaus appear around epoch 90.

Taken together, the ablations make the source of possible improvements explicit:
most SSIM/PSNR gains come from scaling the Swin-Unet architecture (e.g., up to +1.62
dB PSNR when increasing depth at embed = 512), while perceptual gains (NIQE) are
predominantly induced by the LPIPS-based loss when the architecture is fixed. The best

Fig. 1. Validation PSNR and SSIM versus training epochs. Legend: LYT Loss (blue), LPIPS-based loss
with weight 0.1 (green), FN-Loss (purple), and MSE Loss (red). Curves are smoothed; metrics
are computed after each epoch on the full validation set comprising SID (darkest exposure),
LOL-v1, and the real and synthetic subsets of LOL-v2.

Machine GRAPHICS & VISION 34(4):23–42, 2025. DOI: 10.22630/MGV.2025.34.4.2.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.2


T. M. Lehmann, P. Rokita 35

results arise from their combination – adequate model capacity paired with a modest
LPIPS weight – yielding images that are both faithful and perceptually convincing.

These comprehensive results underscore the importance of model capacity, appro-
priate dataset integration, and carefully chosen composite loss functions in achieving
high-quality, perceptually convincing low-light image enhancement; a visual comparison
of our model’s outputs with the reference images is provided in Figure 2.

On a per-dataset basis, holding the loss fixed (LYT) and increasing capacity from
depths 2-4-6-2 to 2-4-8-2 at embed = 512 yields ∆PSNR/∆SSIM of +1.43/ + 0.067
(LOL-v1), +0.99/ + 0.031 (LOL-v2-real), and +1.62/ + 0.014 (LOL-v2-synth). With the
architecture fixed, LPIPS(0.1) improves NIQE vs. LYT by 0.24 (5.55 vs. 5.79, LOL-v1),
0.19 (5.97 vs. 6.16, LOL-v2-real), and 0.27 (5.58 vs. 5.85, LOL-v2-synth); BRISQUE
favors LYT on real images (15.36 vs. 17.18; 18.00 vs. 19.23), while LPIPS is slightly
better on synthetic (16.08 vs. 16.42). Although MSE attains a strong NIQE on LOL-
v2-synth (5.02), it lags markedly in SSIM/PSNR across datasets. For data integration,
selecting the single darkest SID exposure per scene is the most consistent strategy on
real benchmarks; random selection can score higher on synthetic data but is less stable
overall.

In practice, a compact recipe emerges: embed = 512 with depths 2-4-8-2, training on
SID (single darkest) and a light LPIPS weight (0.1). Heavier LPIPS weights (0.5–1.0)
reduce fidelity and stability, and convergence plateaus around epoch 90, after which
early stopping is beneficial. Qualitatively (Fig. 2), this setting mitigates colour shifts
and preserves edges, with only minor brightness deviations relative to ground truth.

3.2. Comparison with other algorithms

The quantitative comparison of our best-performing model – Swin-Unet trained with
the proposed LPIPS-based loss function – is presented in Table 5. Although the model
employing the LYT loss achieved similar performance, we prioritize the LPIPS-based
approach as it introduces a novel perceptual component specifically tailored to low-light
image enhancement. Furthermore, since the LPIPS-based loss was explicitly designed
and proposed within this work, it more clearly represents our contributions.

From the results, it is evident that our Swin-Unet architecture achieves competitive
but somewhat lower quantitative performance compared to state-of-the-art methods on
all considered LOL datasets. Specifically, our best model achieved PSNR and SSIM
of 21.77 dB and 0.827 on LOL-v1, 22.60 dB and 0.826 on LOL-v2-real, and 22.42 dB
and 0.897 on LOL-v2-synthetic. In contrast, leading architectures such as CIDNet-
oP [8], RetinexFormer [2], and LYT-Net [1] consistently surpass these metrics across all
benchmarks, reaching PSNR values around 28 dB and SSIM over 0.88 in many cases.

These observed discrepancies may suggest that the Swin-Unet architecture – origi-
nally proposed for medical image segmentation – might not be optimal in capturing the
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Fig. 2. Qualitative comparison layout and data sources. Columns: left – low-light inputs; centre –
outputs from the model trained with an LPIPS-weighted loss; right – corresponding well-exposed
ground-truth images. Rows: 1–2 from LOL-v1; 3–4 from LOL-v2-real; 5–6 from LOL-v2-synth.
Images are randomly selected examples from the LOL family.
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Tab. 5. Quantitative results on LOL datasets.

Methods PSNR (LOL-v1) SSIM (LOL-v1) PSNR (LOL-v2-real) SSIM (LOL-v2-real) PSNR (LOL-v2-syn) SSIM (LOL-v2-syn)
SID [4] 14.35 0.436 13.24 0.442 15.04 0.610
3DLUT [47] 21.35 0.585 20.19 0.745 22.17 0.854
Zero-DCE [11] 14.86 0.540 13.65 0.246 21.46 0.848
EnlightenGAN [15] 17.48 0.650 18.23 0.617 — —
KinD [51] 20.87 0.800 20.40 0.652 16.26 0.591
KinD++ [49] 21.30 0.820 20.15 0.678 19.44 0.830
Bread [12] 22.96 0.840 22.54 0.762 19.28 0.831
IAT [6] 23.38 0.810 21.43 0.638 19.18 0.813
HWMNet [7] 24.24 0.850 22.40 0.622 18.79 0.817
LLFlow [35] 24.99 0.920 21.60 0.643 19.15 0.860
DeepUPE [33] 14.38 0.446 13.27 0.452 15.08 0.623
DeepLPF [24] 15.28 0.473 14.10 0.480 16.02 0.587
UFormer [36] 16.36 0.771 18.82 0.771 19.66 0.871
RetinexNet [37] 18.92 0.427 18.32 0.447 19.09 0.774
Sparse [42] 17.20 0.640 20.06 0.816 22.05 0.905
EnGAN [15] 20.00 0.691 18.23 0.617 16.57 0.734
FIDE [39] 18.27 0.665 16.85 0.678 15.20 0.612
Restormer [46] 26.68 0.853 26.12 0.853 25.43 0.859
LEDNet [53] 25.47 0.846 27.81 0.870 27.37 0.928
SNR-Aware [40] 26.72 0.851 27.21 0.871 27.79 0.941
LLFormer [34] 25.76 0.823 26.20 0.819 28.01 0.927
RetinexFormer [2] 27.14 0.850 27.69 0.856 28.99 0.939
CIDNet-wP [8] 27.72 0.876 28.13 0.892 29.37 0.950
CIDNet-oP [8] 28.14 0.889 27.76 0.881 29.57 0.950
A3DLUT [32] 14.77 0.458 18.19 0.745 18.92 0.838
IPT [5] 16.27 0.504 19.80 0.813 18.30 0.811
Band [41] 20.13 0.830 20.29 0.831 23.22 0.927
LPNet [18] 21.46 0.802 17.80 0.792 19.51 0.846
SNR [40] 24.61 0.842 21.48 0.849 24.14 0.928
LLIE [20] 25.24 0.855 25.94 0.854 27.79 0.941
PyDiff [52] 27.09 0.930 24.01 0.876 19.60 0.878
MIRNet [45] 26.52 0.856 27.17 0.865 25.96 0.898
LYT-Net [1] 27.23 0.853 27.80 0.873 29.38 0.940
Ours Swin-Unet (LPIPS-based) 21.77 0.827 22.60 0.826 22.42 0.897

specific features necessary for low-light image enhancement. However, despite somewhat
lower quantitative results, the Swin-Unet architecture presents certain distinct advan-
tages. Its pure transformer-based design effectively leverages global context modelling
through self-attention mechanisms, enabling a strong representation of both local details
and long-range dependencies simultaneously. Moreover, the architecture is relatively
straightforward, highly modular, and significantly easier to train and fine-tune com-
pared to more complex multi-stage architectures, such as those incorporating diffusion
models or hybrid convolution-transformer networks.

Another key advantage of our model is computational efficiency and flexibility. While
it is plausible that utilizing a larger-scale Swin-Unet network (e.g., deeper or wider vari-
ants) could potentially yield better quantitative performance, our experimental investi-
gation was limited by available computational resources and time constraints. Therefore,
an extensive exploration of larger models was beyond the scope of this work.

Nonetheless, the performance achieved demonstrates the viability and potential of
the Swin-Unet approach – especially when paired with novel perceptual losses such as
our LPIPS-based formulation. Given its favorable balance between complexity, compu-
tational efficiency, and respectable image enhancement quality, Swin-Unet remains an
attractive candidate for further exploration, potentially yielding improved performance
if scaled appropriately.
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4. Conclusions and contributions

This study set out to verify whether a compact, single-stage Swin-Unet can remain
competitive in extremely low-light conditions once supervision is shifted from purely
pixel-based criteria to a perceptually oriented objective. The network we employed – an
off-the-shelf Swin-Unet restricted to an embedding width of 512 and an encoder–decoder
depth pattern of 2-4-8-2 – was purposefully kept small: with batch size one it already sat-
urates the memory of a single RTX 4090, and shortening turnaround times was essential
for running the nine-by-four grid of capacity-and-loss experiments reported throughout
the paper. Within these resource limits several contributions emerge.

First, the composite loss that blends LPIPS, Smooth-L1, MS-SSIM, inverted PSNR,
colour mean and gradient consistency proves almost as effective as the far more elaborate
LYT objective when both are applied to the same Swin-Unet backbone; on LOL-v1 and
LOL-v2-real the two formulations reach virtually identical SSIM, while the LPIPS variant
shows a slight PSNR advantage on two of the three benchmark splits. This confirms
that loss design can close much of the perceptual gap even when architectural capacity
is modest.

Second, the paper offers what is, to our knowledge, the first transformer-only baseline
that covers LOL-v1, LOL-v2-real, LOL-v2-synthetic and SID under a single, fully doc-
umented training protocol; future work can therefore compare new transformer variants
against numbers that are not confounded by convolutional extras or multi-branch tricks.

Third, the SID ablation confirms that keeping only the darkest exposure of each scene
yields more dependable generalisation than either random or multi-exposure sampling –
an observation that simplifies dataset preparation and, to our knowledge, had not been
quantified before. The study also clarifies the limitations of our approach. Even the
strongest configuration trails recent diffusion or multi-branch systems by roughly 5–6
dB in PSNR and a few hundredths in SSIM; visual inspection further reveals occasional
smoothing of fine texture, most notably in areas dominated by read-noise. These deficits
likely stem from choices that remained arbitrary because of limited time and compute
– for example, the fixed LPIPS weight, the 7×7 shifted-window size, and the cap on
embedding width. A wider sweep over those hyper-parameters, combined with experi-
ments on deeper or broader Swin backbones, appears the most direct route to closing
the remaining performance gap.

In short, although the model remains below the current state of the art, the study
shows that a judiciously balanced perceptual loss can bring a compact Swin-Unet within
striking distance of results obtained with far more elaborate objectives, establishes a
clean transformer-only benchmark for future scaling studies, and uncovers a simple
luminance-based strategy for sampling SID that reliably improves generalisation – in-
sights that will help subsequent research allocate computational resources where they
matter most.
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