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Abstract Skin lesion segmentation identifies and outlines the boundaries of abnormal skin regions.
Accurate segmentation may help in the early detection of skin cancer. Accurate Skin Lesion Segmenta-
tion is still challenging due to different skin color tones, variations in shape, and body hairs. Moreover,
variability in the lesion appearance, quality of the images, and lack of clear skin boundaries make the
problem even harder. This paper proposes a SegNet model with spatial attention mechanisms for skin
lesion segmentation. Adding one component of spatial attention to SegNet allows the proposed model to
focus more on specific parts across the image, eventually leading to a better segmentation of the lesion
boundary. The proposed model was evaluated on the ISIC 2018 dataset. Our proposed model attained
an average accuracy of 96.25%, and the average dice coefficient equals 0.9052. The model’s performance
indicates its possible application in automated skin disease diagnosis.

Keywords: skin lesion segmentation; deep learning; spatial attention; SegNet.

1. Introduction

Skin is the largest organ of the human body that is usually directly exposed to the air.
In other words, it is the most vulnerable organ due to its exposure to ultraviolet rays
from the Sun and other environmental toxins. It leads to various skin diseases, including
skin cancer [28]. According to the International Agency for Research on Cancer (IARC),
approximately 3 330 000 new cases of skin cancer were diagnosed worldwide in 2022 [14].
Moreover, almost 60 000 people died from the disease. Furthermore, the IARC has
observed that there are 5.4 million new cases of skin cancer every year [31]. Therefore,
the World Health Organisation ranks skin cancer as one of the most prevalent and
fastest-growing cancers globally [12].

The cause of skin cancer is the proliferation or formation of skin cells unevenly or
abnormally. Depending on their type and strength, this proliferation of skin cells can
infiltrate or disseminate to other areas of the body. Based on different skin cells, the
three important types of skin cancers are basal cell skin cancer, squamous cell skin
cancer, and Melanoma. Physicians use these abnormal cells to determine the type of
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skin cancer [2, 13, 21]. Basal cell skin cancer and squamous cell skin cancer are less
dangerous as they hardly result in death. However, the most dangerous type of cancer is
Melanoma, accounting for around 75% of deaths attributed to skin cancer. Its formation
starts in melanin-producing cells that develop in melanocytes [11].

Even though Melanoma, a frequently occurring skin cancer, is lethal and the death
rate of this disease is very high, it is easily curable if the detection is made in its early
stages. According to [14], the in-time diagnosis of Melanoma decreases the mortality
rate by 90%. Some other studies reveal that there is a 95% early diagnosis (stage I of
the disease) survival rate and a 20% late discovery rate (stage IV of the disease) [19,31].
It implies that early detection increases the chances of survival and improves therapy
efficacy. For this reason, it is critical to diagnose and treat dermatoses as soon as possible.

One of the conventional methods for the diagnosis of melanoma and other skin cancer
types is the biopsy. This procedure involves taking a sample from a suspected skin
lesion to perform medical tests and determine if it is cancerous. However, undergoing
a biopsy can be challenging as it involves extracting a sample of the lesion. It can be
uncomfortable and requires time for the procedure and the subsequent analysis. The
alternative to biopsy is the visual assessment of skin lesions. Since pigmented lesions
are visible on the skin’s surface, a skilled visual examination can often detect Melanoma
at an early stage. It often involves ABCD Scale [13] that evaluates asymmetry, border
irregularity, color variegation, and lesion diameter. The ABCDE Scale [6, 24] is an
extension of the ABCD scale and adds evolving to account for changes in the lesion
over time. Similarly, Glasgow 7-point Checklist [8] includes major criteria such as a
change in size, shape, and color, along with minor criteria like inflammation, crusting or
bleeding, sensory changes, and the diameter of the lesion. These algorithms provide a
structured approach to assess skin lesions and help in the early detection of Melanoma
by identifying key warning signs.

Dermatologists often use a dermatoscope to enhance the visibility of skin lesions by
magnifying them with light. This enhanced visibility allows dermatologists to detect
early Melanoma that might be invisible to the naked eye. While dermoscopy increases
detection accuracy, the complexity of skin lesions and the sheer volume of dermoscopic
images make visual inspection potentially non-reproducible, time-consuming, and sub-
jective in medical practice. That is why advancements in computer-aided diagnostic
systems have become so important, offering more consistent and efficient analysis of
dermoscopic images [9].

Due to the above limitations of visual inspection and dermoscopy, there is a strong
motivation to develop computer-assisted diagnosis (CAD) systems to support dermatol-
ogists in their examinations. A critical aspect of CAD systems for efficiently analyzing
dermoscopic images is automatically segmenting skin lesions from dermoscopic images,
enabling more focused and efficient automated analysis of those areas. This automatic
segmentation significantly aids early skin cancer detection and diagnosis by improving
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diagnostic accuracy. However, accurate automatic segmentation of skin lesions is chal-
lenging due to three main factors: (1) Melanomas can vary greatly in shape, size, color,
texture, and skin type. Distortions and natural features like hair, air bubbles, and blood
vessels complicate the segmentation process. (2) Skin lesions often have fuzzy or un-
even edges, and the contrast between the lesion and surrounding skin can be minimal.
(3) Early algorithms were trained on relatively small datasets. Gathering large-scale
skin lesion annotations from medical experts is difficult.

Existing CAD methods to address the above limitations often give unsatisfactory
outcomes because they struggle with artifacts such as corners and low-contrast regions.
Moreover, hairs against the background remain critical challenges, making boundary
definition a difficult task [25]. On the other hand, the spatial attention mechanism uses
spatial relationships of features and creates a spatial attention map. It has been observed
that spatial attention modules are helpful in many image processing applications [22,30,
36]. Therefore, this paper proposes a transfer learning-based approach combined with
the spatial attention technique utilizing SegNet to improve the accuracy of skin lesion
segmentation.

The paper’s main contributions are summarized below:
1. The Spatial Attention module is introduced in the feature extraction process of

the encoder. This module effectively captures spatial dependencies. This module
enables the network to selectively emphasize important regions in the feature maps,
improving the understanding of fine details.

2. The bottleneck layer structure of SegNet is modified by integrating a spatial
attention module. This design increases the receptive field and allows the network to
capture contextual information, resulting in more precise segmentation.
We have evaluated the performance of our proposed method on the ISIC 2018 dataset [7,

32]. This dataset contains dermoscopic images for skin lesion analysis. It was selected
because it contains diverse skin lesion types collected from many patients. The proposed
model showed the highest segmentation accuracy on this dataset compared to the pub-
lished results on the same dataset. Hence, it proves the efficacy of the proposed model
in accurate skin lesion segmentation.

2. Background and related works

This section first describes the essential background of skin lesion segmentation tech-
niques. Subsequently, state-of-the-art skin lesion segmentation techniques are presented.

2.1. Background on skin lesion segmentation techniques

Skin lesion segmentation is pivotal in the fight against skin cancer, particularly Melanoma.
Automated image analysis technique separates suspicious moles or lesions from the sur-
rounding healthy skin in digital images, offering several benefits for dermatologists:
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• Enhanced Diagnostic Accuracy: It provides a clear picture of the lesion’s bound-
aries, allowing for a detailed analysis of its characteristics, such as color, texture,
and borders. Moreover, it helps to distinguish between benign and malignant moles,
detecting subtle variations that might be missed otherwise.

• Earlier Detection: By clearly highlighting suspicious areas, segmentation aids in
identifying melanomas at an early stage, when treatment is most effective.

• Improved Workflow Efficiency: Automating the isolation of lesions saves time
for dermatologists, allowing them to focus on interpreting the segmented data and
making diagnoses, especially for complex cases.

However, achieving accurate segmentation is challenging due to:
• Variability in Lesions: Skin lesions can vary significantly in color, shape, texture,

and size, making a one-size-fits-all approach difficult.
• Artifacts: Features like hair, blood vessels, or wrinkles can mimic lesion features

and complicate the segmentation process.
• Image Quality: Variations in illumination, camera focus, and resolution can hinder

accurate delineation.
These challenges underscore the importance of advanced techniques and tools in

improving the precision and reliability of skin lesion segmentation.

2.2. Related work on skin lesion segmentation techniques

Researchers are actively working to overcome the hurdles above. The field of skin lesion
segmentation primarily relies on two approaches:

• Traditional Image Processing Techniques: These methods use algorithms to
analyze various image properties like color intensity and texture. While they can be
effective, they often struggle with the high variability in skin lesions, limiting their
accuracy and reliability.

• Deep Learning-based Techniques: These have revolutionized the field by leverag-
ing Convolutional Neural Networks (CNNs). CNNs are trained on extensive datasets
of labeled images, allowing them to learn complex patterns and identify subtle fea-
tures that distinguish lesions from healthy skin. Due to their ability to handle the
variability in lesions and their superior accuracy, deep learning approaches are con-
sidered state-of-the-art.
The initial research on combining transfer learning and fine-tuning techniques with a

melanoma segmentation strategy based on U-net and LinkNet deep learning networks is
found in [3]. The experiments were performed on PH2, ISIC 2018, and DermIS datasets.

The method faced limitations due to the image capture device, which affected the
model’s learning of disease characteristics like resolution, color, sharpness, and lighting.
The authors claimed that the reproducibility of results is also limited by the diversity of
skin tones across different populations.

Machine GRAPHICS & VISION 34(4):3–22, 2025. DOI: 10.22630/MGV.2025.34.4.1.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.1


M. Arif, A. Abbasi, M. Arif, M. Rashid 7

A pyramid module incorporating lateral connections and top-down paths was used
to compensate for the loss of spatial feature information [1].

This method integrated RetinaNet and MaskRCNN, with the Melanoma ISIC 2018
and PH2 datasets serving as training and validation grounds. The method’s limitations
included segmentation accuracy being affected by high occlusions near lesions and data
class imbalance due to the absence of additional lesion data.

In [16], a fully automated multi-class skin lesion segmentation and classification ap-
proach was proposed using the most discriminant deep Learning Features and Improved
Moth Flame Optimization. The proposed methodology’s segmentation performance was
evaluated on the ISBI 2016, ISBI 2017, ISIC 2018, and PH2 datasets. However, the
computational time was one of the work’s limitations.

In response to skin lesion segmentation, a novel EIU-Net method was proposed to
tackle the challenging task [35]. Inverted residual blocks and an efficient pyramid squeeze
attention (EPSA) block were proposed as the main encoders at different stages to capture
the local and global contextual information. In contrast, atrous spatial pyramid pooling
(ASPP) was utilized after the last encoder, and the soft-pool method was introduced
for downsampling. Also, they proposed a novel method named multi-layer fusion (MLF)
module to effectively fuse the feature distributions and capture significant boundary in-
formation of skin lesions in different encoders to improve the network’s performance.
Furthermore, a reshaped decoder fusion module was used to obtain multi-scale informa-
tion by fusing feature maps of different decoders to improve the final results of skin lesion
segmentation. To validate the performance of this network, it was compared with other
methods on four public datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and
PH2 datasets. Moreover, the main metric Dice Score achieved by the proposed EIU-Net
are 0.919, 0.855, 0.902, and 0.916 on the four datasets; our EIU-Net can improve the
accuracy of skin lesion segmentation [35].

In [23], the authors introduce a novel end-to-end trainable network for skin lesion
segmentation. The proposed methodology comprises an encoder-decoder, a region-aware
attention approach, and a guided loss function. The trainable parameters are reduced
using depth-wise separable convolution, and the attention features are refined using a
guided loss, resulting in a high Jaccard index. We assessed the effectiveness of our
proposed RA-Net on four frequently utilized benchmark datasets for skin lesion segmen-
tation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2.

Integrating conventional treatment methods with deep learning frameworks to en-
hance skin lesion identification is proposed in [29]. The study used image data, hand-
crafted lesion features, and patient-centric metadata for effective skin cancer diagnosis. It
combines image features transferred from Efficient Nets, color and texture information
extracted from images, and pre-processed patient metadata to build a hybrid model.
Each model underwent training and evaluation using the ISIC 2018 and ISIC 2019
datasets widely used for skin cancer analysis. However, a notable limitation of this
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approach is the extreme imbalance in the datasets, which requires careful consideration
of appropriate evaluation metrics. Despite achieving high sensitivity (90.49%) and speci-
ficity (97.76%) on the ISIC 2018 dataset, the model’s performance may vary when applied
to different datasets or real-world scenarios with varying data imbalance or complexity
levels.

A novel deep-learning method named ChimeraNet was proposed for detecting hair
and ruler marks in skin lesion images [17]. ChimeraNet employs an encoder-decoder
architecture, incorporating a pre-trained EfficientNet and the decoder’s squeeze-and-
excitation residual (SERes) structures. However, this technique demands significant
computational resources and training time due to the complexity of the encoder-decoder
architecture and pre-trained models.

For accurate detection and delineation of hair in skin images, a researcher in [4] pro-
posed a deep learning strategy based on a hybrid network of convolutional and recurrent
layers for hair segmentation using weakly labeled data and deep encoded features. The
spatial dependencies between disjointed patches were encoded by feeding the encoded
features into recurrent neural network layers. The proposed method achieved segmenta-
tion accuracy with a Jaccard Index of 77.8 percent.

In [27], the researcher presented a machine learning-based methodology for segment-
ing skin lesions with novel borders and hair removal. The suggested approach removes
any corner boundaries from an RGB skin picture as input. The skin hairs covering the
image are then found and eliminated. The generated picture is then improved, and the
GrabCut method is used to segment lesions. The research showed that the skin lesion
segmentation method proposed in this paper had Jaccard indices of 0.77 and 0.80 on
PH2 and ISIC 2018 datasets, respectively, and Dice indices of 0.87 and 0.82, respectively.
The method failed to perform well on images with tiny affected areas. It automatically
draws a rectangle around the region using the GrabCut method. However, when we deal
with dermoscopic pictures with tiny lesions, initiating too big or too small rectangles for
over-segmentation will occur during this method’s selection process.

Segmentation accuracy degradation and occlusions in dermoscopic images constitute
the significant problems identified here. High resolution and elaborate surface structures
make conventional segmentation algorithms struggle with dermoscopic pictures. A mis-
take in segmentation accuracy may give wrong interpretations or cause detection failures,
which affect the reliability of the diagnosis results. Moreover, occlusions within these
images, such as those brought about by artifacts, hair follicles, and other foreign matter,
block important details required during skin lesion boundary determination, leading to
distortion. Therefore, it is essential to address these challenges if automated methods of
segmenting medical pictures are to be effective in the field of dermatology.

Our proposed method is the Spatial SegNet model, designed based on attention
mechanisms, which work well for increasing precision levels and handling occluded areas
in dermoscopic images.
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Fig. 1. Few examples of skin lesion samples in ISIC 2018.

3. Materials and methods

3.1. Data acquisition

In this research work, the ISIC 2018 dataset [7,32] was used to evaluate the results of our
proposed method. The ISIC 2018 dataset is a comprehensive collection of dermoscopic
images curated for skin lesion analysis. It contains 2 594 images in JPG format, each
accompanied by ground truth segmentation masks. This dataset was selected for its di-
versity and the high-quality annotations it provides, which are essential for an accurate
evaluation of segmentation methods. The images in the ISIC 2018 dataset vary signif-
icantly in lesion type and appearance, offering a robust challenge for our segmentation
model. The ground truth masks serve as a benchmark for assessing the performance
of our method, allowing us to measure the accuracy and effectiveness of the segmenta-
tion results quantitatively. Using this well-established dataset, we ensure our rigorous
evaluation is relevant to real-world clinical scenarios. Figure 1 presents some samples of
complex skin lesions in the dataset of ISIC 2018.

3.2. Proposed model

This section presents the details of our proposed method. SegNet has an encoder-decoder
structure followed by a pixel-wise classification layer. The encoder architecture of SegNet
is identical to VGG16’s convolutional layers in topology. The decoder network maps the
encoder feature maps to input resolution-sized feature maps for pixel-wise classification.
In the proposed model, spatial attention layers are added to the encoder network of the
SegNet architecture. In skin lesion images, spatial attention will help the model to focus
on essential parts or regions of interest, thereby improving accuracy in segmentation by
concentrating on relevant areas while ignoring irrelevant or noisy parts. The SegNet
decoder network has several decoders organized in a hierarchy, each corresponding to
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Fig. 2. SEGNET with Spatial Attention Architecture.

Fig. 3. Spatial Attention Module

one encoder. The correct decoders take their input feature maps and perform non-linear
upsampling using max pooling indices that they receive from their respective encoders.
It was derived from an architecture used for unsupervised feature learning [26]. Here
are many practical advantages of reusing max-pooling indices during decoding. The
architecture of SegNet with Spatial Attention is shown in Figure 2.

This model combines pre-trained VGG16 layers with spatial attention mechanisms
in the encoder network. In the following subsections, every layer is explained in detail.
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Input layer
An RGB image of a fixed size is an input to this layer. It is usually prepared after
normalization, subtracting the mean from the image or scaling all values within a certain
range. It accepts input images of size 256×256×3 (height, width, color channels).

Encoder blocks
Pre-trained VGG16 layers are used for feature extraction in the SegNet encoder net-
work. The following layers from the pre-trained VGG16 model are used in the proposed
architecture. Each convolutional block typically includes 3×3 filters with a stride of 1
and padding of 1 to extract features such as edges, textures, and color patterns. These
layers apply learnable filters to the input feature maps. The filters essentially slide across
the input, extracting features such as edges, textures, and color patterns. The number
of filters used determines the complexity and richness of the extracted features. The
activation function ReLU is applied after the convolutional layers (Conv) to introduce
nonlinearity and allow the model to capture more complex relationships in the data.
The batch normalization layers normalize the activations of the previous convolution
layer. It facilitates faster convergence during training and enhances the stability of the
learning process. The batch norm essentially standardizes the activations across different
mini-batches, mitigating the issue of internal covariate shift. The pooling layers down-
sample the feature maps spatially using max pooling. It also makes the model robust to
translations that occur very close together, while simultaneously making it less sensitive
to noise because features become more generalized.

A Spatial Attention Block is a custom module added to the model to improve the
segmentation of skin lesions (Figure 3). It acts on feature maps encoded in the previous
convolutional block borrowed from the pre-trained VGG16 model. Specifically, it is
inserted after every pooling layer within the VGG16 encoder. Its main objective is to
enhance the encoded features and focus on them. Details of each spatial attention block
are explained as follows:

• Squeeze Operation: First, feature maps are made smaller through a 1x1 convolu-
tion. This step aims to reduce the dimensionality of the space and the computational
cost incurred by modulating units to learn their interaction.

• Excitation Operation: The method spins a spatial attention map to identify vital
skin detection areas. It is achieved by applying another 1x1 convolution operation
and performing a sigmoid activation function. The resultant map assigns different
values between 0 and 1 for each part of an image, where a value of zero means least
significant and a value of one corresponds to the most significant pixels, thereby
highlighting those regions necessary for segmentation through information obtained
from prior layers.

• Element-wise Multiplication: The last part includes element-wise multiplication
of the initial feature maps with the produced spatial attention map. By doing this,
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characteristics identified as important by our attention mechanism are emphasized,
thus enabling the model to concentrate on particular parts during its segmenting
duties. Its intensified focus strengthens the model’s ability to distinguish between
unhealthy cells and their surrounding healthy tissues.

Further elaborating on the workings of the Spatial Attention Block, the first Conv2D
layer squeezes the feature maps by decreasing the channels or properties in this module.
For example, if the entry feature maps have 512 channels, the squeezing layer might
bring this down to a smaller amount, like 64 channels. Then, using the sigmoid activa-
tion function, the second Conv2D generates attention weights representing a probability
distribution that shows the importance of different spatial locations within the given
feature maps. After that, these produced attention weights are multiplied with origi-
nal features so that some features can be amplified or suppressed selectively based on
their importance towards achieving the segmentation goal. Thus, resulting scaled fea-
ture maps will center around crucial areas, helping the model capture fine details and
semantics necessary for accurate segmentation.

Decoder layers (segmentation mask reconstruction)

The decoder part takes the encoded feature maps obtained from the encoder along with
the spatial attention. It has a symmetric structure relative to the encoder and progres-
sively increases the resolution of feature maps through transpose convolution operations.
Convolution layers are attached after these upsampling operations to refine features and
learn spatial relationships between pixels. Unlike its counterpart, which extracts them,
this one aims to recover spatial information while predicting probabilities for individual
pixels to be part of skin lesions. For example, (background versus lesion) background
versus lesion class probability maps may be obtained by applying the softmax activation
function to the final output layer on a class basis. These layers receive processed fea-
tures, including effects caused by spatial attention blocks within the encoder, and then
gradually reconstruct an image that focuses on the segmentation task. They function
oppositely from encoders, i.e., starting with a high-level understanding of the picture
and adding more detailed spatial information stepwise downwards towards the lowest
level segmentation features being dealt with at every decoder block stage. Each block
typically consists of :

• Upsampling 2D: It Increases feature maps’ spatial resolution by this layer. Unlike
the traditional Conv layer, this layer learns upsampled filters that expand the feature
maps while introducing new spatial information. It allows the model to recover spatial
details lost during pooling in the encoder.

• Convolutional layers: After Upsampling layers, Conv layers are applied to refine
the features and learn the relationships between pixels similar to the encoder. They
help to combine upsampled information with high-level features from the encoder.
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• Batch Normalization layers (Batch Norm): These are used for normalizing
activations after upsampling, similar to the encoder, for better training stability.

Output layer
The final decoder output is fed to a softmax classifier layer to produce the class proba-
bilities. The softmax function produces a probability map for every pixel in the image.
This map shows how likely each pixel is to belong to a specific class (e.g., background or
skin lesion). The class with the highest probability for each pixel becomes the predicted
segmentation label.

Spatial attention mechanisms are incorporated into models designed for skin lesion
segmentation, improving the overall performance and reliability of the proposed model.
This technique combines pre-trained features, spatial attention mechanisms, and Seg-
Net’s decoder architecture to achieve accurate skin lesion segmentation. Pre-trained
VGG16 weights extract essential image features more effectively, reducing training time
and enhancing its generalization ability over new data. Considering different skin lesion
sizes and appearances, introducing a spatial attention block narrows down the essential
parts of an image, thus leading to precise skin lesion segmentation.

3.3. Evaluation metrics

To assess the performance of our proposed skin lesion segmentation method, we employed
a variety of evaluation metrics that provide a comprehensive analysis of segmentation
accuracy and quality. The metrics used in this study include the Dice Coefficient and
Binary Accuracy.

TP and FP refer to lesion pixels extracted as lesion pixels and non-lesion pixels
extracted as lesion pixels, respectively. At the same time, FN and TN represent lesion
pixels extracted as non-lesion pixels and non-lesion pixels extracted as non-lesion pixels,
respectively.

Dice Coefficient
The Dice Coefficient is an essential metric for evaluating segmentation quality. It is
calculated as the ratio of twice the area of overlap between the predicted and ground
truth masks to the sum of the areas of both masks. The Dice Coefficient ranges from
0 to 1, with a value closer to 1 indicating better segmentation accuracy. This metric is
beneficial for handling class imbalance, as it emphasizes the correct prediction of positive
samples. The dice similarity coefficient is a spatial overlap index and a reproducibility
validation metric, and it computes the similarity index between the given images.

Dice Coefficient = 2TP
(FP + TP) + (TP + FN) . (1)
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Accuracy
Accuracy refers to the proportion of correctly predicted pixels (lesion and non-lesion)
out of the total number of pixels. It is calculated as follows:

Accuracy = TP + TN
TP + TN + FN + FP . (2)

Precision
Precision refers to the proportion of true positive predictions among all the pixels pre-
dicted as lesions. It indicates the model’s accuracy in identifying the lesion pixels out of
all the pixels it labeled as lesions. Precision is calculated as follows:

Precision = TP
TP + FP . (3)

Sensitivity
Sensitivity, also called Recall, measures the proportion of actual positives (lesions) the
model correctly identifies. It indicates the model’s ability to detect the lesion pixels

Sensitivity = TP
TP + FN . (4)

Specificity
Specificity measures the proportion of actual negatives (non-lesions) the model correctly
identifies. It indicates the model’s ability to avoid false positives.

Specificity = TN
TN + FP . (5)

F1 Score
F1 Score is the harmonic mean of Precision and Recall (Sensitivity). It is a balanced
measure that considers both false positives and false negatives.

F1 = 2(Precision × Recall)
Precision + Recall . (6)

IOU
IOU is used to measure the overlap between two images.

IOU = TP
TP + FP + FN . (7)
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4. Experimental results

An open-source machine learning framework, TensorFlow, implements the methodology.
It is a user-friendly interface for working with deep neural networks, designed for ease
of use rather than machine-level interactions. It is a library mainly used for developing
real-time computer vision applications.

• CPU Resources:
– Environment 1: 256MB memory limit on device /device:CPU:0.
– Environment 2: XLA CPU with 16GB memory limit on device /device:XLA_CPU:0.

• GPU Resources:
– Tesla T4 GPUs: Two GPUs with 14.8GB memory each, identified as /device:GPU:0

and /device:GPU:1, with PCI Bus IDs 0000:00:04.0 and 0000:00:05.0, respec-
tively. Both GPUs have Compute Capability 7.5.

– XLA GPUs: Two GPUs with 16GB memory each, denoted as /device:XLA_GPU:0
and /device:XLA_GPU:1.

This combination of hardware configurations provided the computational capacity
necessary for efficient training and testing of deep learning models, enabling the handling
of large-scale data processing and complex model architectures.

4.1. Hyperparameters

To achieve a skin lesion segmentation model, hyperparameters shown in Table 1 are
chosen to optimize performance and manage computational resources effectively. A
learning rate of 5 × 10−6 is important as it allows for small steps to be taken by the
optimizer while minimizing the loss function. It ensures the model converges slowly and
steadily without overshooting the minimum loss function. Batch size 8 strikes a balance
between memory efficiency and accurate gradient estimation.

To validate our skin lesion segmentation method, we carried out a 5-fold cross-
validation. The steps involved partitioning a dataset into five equal sets, training on
four, and validating against the fifth set. The results are shown in Table 2. The mean
of the five-fold validation results is given in the last row of the table. The results show

Tab. 1. Hyperparameters for the proposed model.

Parameter Name Parameter Value

Learning Rate 5 × 10−6

Batch Size 8
Input Size 256, 256, 3
Optimizer Adam Optimizer
Epoch 60
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Tab. 2. Results of the proposed model with 5-fold cross validation (STD: standard deviation).

Folds IoU Dice Coefficient Precision Sensitivity Specificity Accuracy
1 0.8026 0.8980 0.8969 0.9086 0.9718 0.9657
2 0.8240 0.9242 0.9163 0.8969 0.9744 0.9616
3 0.8026 0.9051 0.9272 0.8890 0.9820 0.9611
4 0.8240 0.9022 0.9086 0.8725 0.9718 0.9631
5 0.8026 0.8965 0.9310 0.8619 0.9820 0.9611

Mean 0.8111 0.9052 0.9160 0.8857 0.9764 0.96252
STD 0.0092 0.0045 0.0155 0.0172 0.0053 0.0026

a high value of the Dice coefficient (0.9052) and segmentation accuracy (96%). The
sensitivity of the proposed model is 0.8857.

Table 3 compares the results of our proposed model against state-of-the-art published
results using the ISIC 2018 dataset. Our proposed model of skin lesion segmentation,
tested on the ISIC 2018 dataset, shows significant improvements in segmentation. The
primary comparison tools used to judge the outcomes are the Dice Coefficient and Binary
Accuracy. The high value of the Dice Coefficient shows more similarity of the predicted
results with the ground truth mask.

Adding spatial attention to the SegNet architecture achieves better skin lesion seg-
mentation results. Spatial attention assigns weights to each pixel, highlighting the areas
of interest and allowing the model to distinguish between lesion and non-lesion regions.
This improves the segmentation accuracy as the model can focus on the spatial locations
with features relevant to skin lesions, such as irregular shapes and varying pigmentation
over background noise.

The SegNet with spatial attention model quantitatively improved the Dice similarity
coefficient, IoU, and accuracy scores. These improvements are significant compared
to the other segmentation models (Table 3). Figure 4 shows skin lesion segmentation
results. The segmentation output looks better in the Figure 4, and lesion boundaries are
more precise and consistent.

Tab. 3. Comparative analysis with state-of-the-art techniques.

Model Dataset Split Parameters [106] Accuracy Dice Coefficient
TMU Net [5] 70% training, 10% validation, and 20% testing – 0.9603 0.905
UNeXt [33] 80% training, 20% testing 1.47 0.9586 0.8873
FAT-Net [34] 70% training, 10% validation, and 20% testing 30 0.9578 0.8903
CPFNET [10] 5-fold cross-validation 43 0.9496 0.8769
DAGAN [18] 2296 images for training, 300 images for testing. 54 0.9324 0.87707
CKDNet [15] – 51 0.9492 0.8779
REDAUNet [20] 70% training, 10% validation, and 20% testing 47.77 0.9444 0.902
SA SegNet (Ours) Five-Folds Cross-Validation. 29.6 0.9625 0.9052
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a b c
Fig. 4. Some of the segmented images. Vertically: five cases. Horizontally: (a) original image;

(b) predicted mask, Dice = 0.85; (c) overlay image.
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4.2. Impact of batch size and learning rate

In this experiment, we analyzed the influence of hyperparameters on the model perfor-
mance. This analysis aims to understand the effect of batch size and learning rate on
the Dice Coefficient and the Accuracy metrics. In these experiments, the whole dataset
is divided in the ratio of 0.7:0.1:0.2 for training, validation, and testing, respectively.

The Table 4 presents results for the model at various initial learning rates and their
effect on the Dice Coefficient and Accuracy. The learning rate of 1 × 10−6 is too low for
the model to learn efficiently, as it yields the lowest performance, with a Dice coefficient
of 0.8611 and an accuracy of 0.9395. A learning rate of 1 × 10−5 performs the best with
the highest value of the Dice coefficient of 0.9053, an accuracy of 0.9626. Thus, it infers
that this is the ideal rate of learning and generalization. If the learning rate is increased
to 1 × 10−4, the performance decreases slightly, as the Dice coefficient goes to 0.8794,
and an accuracy of 0.9527 is achieved. This shows that although the model performs
well, the learning rate is too large for optimal training. As the learning rate is increased
to 1 × 10−3, the model training is the worst, with a Dice coefficient of 0.8761 and an
accuracy of 0.9436 on the testing dataset. It may indicate that the model is converging
too fast and missing some finer details in the data. The learning rate of 1 × 10−5 is the
most effective, being the best in segmentation and classification tasks, while increasing
or decreasing the learning rate worsens the performance.

Batch size determines the number of samples in the training dataset to update the
parameters. Increasing the batch size means fewer weight updates in an epoch. Hence,
memory and computational requirements are lower for smaller batch sizes due to the
smaller number of samples per update. However, for smaller batch sizes, the effect
of noise and variance of the loss gradient will be more on the weight updates of the
model. The Table 5 compares the model’s performance across different batch sizes in

Tab. 4. Comparison of Dice Coefficient and Accuracy for different initial learning rates

Initial Learning Rate Dice Coefficient Accuracy
1 × 10−6 0.8611 0.9395

1 × 10−5 (Ours) 0.9053 0.9626
1 × 10−4 0.8794 0.9527
1 × 10−3 0.8761 0.9436

Tab. 5. Comparison of model performance for different batch sizes.

Batch Size Test Dice Coefficient Test Accuracy

4 0.9005 0.9578
8 (Ours) 0.9053 0.9626

12 0.8967 0.9570
16 0.8733 0.9509
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Tab. 6. Comparison of models based on model’s variations.

Model Test Dice Coefficient Test Accuracy

SegNet only 0.8977 0.9581
Partial Removal of Spatial Attention 0.8986 0.9561

Removal of Batch Normalization 0.8827 0.9505
Spatial Attention SegNet (Ours) 0.9052 0.9625

terms of Dice Coefficient and Accuracy. Comparing the dice coefficient and accuracy for
various batch sizes, a batch size of eight is optimal. The model performs best with a
Dice coefficient of 0.9053 and an accuracy of 0.9626. The performance degrades as the
batch size increases from eight, and the dice coefficient and accuracy decrease. Finally,
with the batch size of 16, the performance significantly drops (Dice coefficient of 0.8733
and accuracy of 0.9509), which implies that the bigger batch sizes may preclude the
model’s ability to converge effectively and even generalize well. The overall results,
however, indicate that batch size eight is more likely to bring equilibrium to the model’s
computing efficiency and practical utility. Therefore, it is the most suitable option for
this experiment.

4.3. Ablation experiments

In this section, we perform an ablation study on the proposed model. We have studied
the effect of the spatial attention layer and batch normalization layer.

The Table 6 showcases the comparison of the performances of the different versions of
the models. The core of the system is the SegNet architecture, and performance can be
greatly enhanced by the introduction of some components, like batch normalization and
spatial attention. The spatial attention technique is a method for improving segmen-
tation accuracy, which allows the model to focus on relevant areas of the input.In our
model we have included another highly significant layer, which is called batch normal-
ization (BN). By doing BN the input to each layer, the result is the stabilization of the
process of learning and reduction of internal co-variate shifts. An ablation study shows
that when batch normalization is taken away, both the Dice coefficient and the accuracy
fall drastically. The removal of batch normalization from the model greatly decreases the
model’s accuracy, thus proving its importance in ensuring a successful learning period.

Our model, proposed in this paper, combines spatial attention and batch normaliza-
tion layers. Both layers in the model provides best Dice coefficient of 0.9052 and the
highest accuracy of 0.9625. Hence, it is clear that spatial attention helps the model pick
the salient parts of the image, while batch normalization ensures the model’s training
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runs smoothly and can generalize well, thereby enhancing both segmentation and clas-
sification performance. The implementing these layers is essential for the robustness,
accuracy, and capacity to deal with the complexity of the patterns in the data.

5. Conclusion and future work

This paper provides a detailed framework for the proposed skin lesion Segmentation
model. Our proposed approach uses SegNet architecture combined with spatial atten-
tion layers. Encoder layers are taken from the pre-trained model of VGG16. Our model
showed better segmentation accuracy and improved lesion boundary delineation pre-
cision. It is evident from Table 3 that the proposed model performed better on the
ISIC 2018 dataset than other published state-of-the-art models. We have achieved a
dice coefficient of 0.9052 and a segmentation accuracy of 0.9625.

An important aspect of future work is the incorporation of multimodal data. Com-
bining dermoscopic images with clinical information provides a more holistic approach
to analyzing skin lesions; thus, this approach may increase diagnostic performance by
improving segmentation accuracy. This kind of approach uses different data strengths
to give a more precise and reliable diagnosis. It is also essential to build real-time seg-
mentation systems for clinical purposes. These systems need to work efficiently on edge
devices or mobile platforms to be accessible for use in different clinical environments.
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Abstract In this paper we propose a novel approach to low-light image enhancement using a trans-
former-based Swin-Unet and a perceptually driven loss that incorporates Learned Perceptual Image
Patch Similarity (LPIPS), a deep-feature distance aligned with human visual judgements.

Specifically, our U-shaped Swin-Unet applies shifted-window self-attention across scales with skip
connections and multi-scale fusion, mapping a low-light RGB image to its enhanced version in one
pass. Training uses a compact objective – Smooth-L1, LPIPS (AlexNet), MS-SSIM (detached), inverted
PSNR, channel-wise colour consistency, and Sobel-gradient terms – with a small LPIPS weight chosen
via ablation.

Our work addresses the limits of purely pixel-wise losses by integrating perceptual and structural
components to produce visually superior results. Experiments on LOL-v1, LOL-v2, and SID show that
while our Swin-Unet does not surpass current state-of-the-art on standard metrics, the LPIPS-based
loss significantly improves perceptual quality and visual fidelity.

These results confirm the viability of transformer-based U-Net architectures for low-light enhance-
ment, particularly in resource-constrained settings, and suggest exploring larger variants and further
tuning of loss parameters in future work.

Keywords: low-light image enhancement, U-Net, mean opinion score, LPIPS.

1. Introduction

As shown below, numerous software frameworks, models, and methodologies have been
proposed for the low-light enhancement task. Nevertheless, we extend this research by
examining three persistent gaps – architecture, efficiency, and perception. Pure trans-
former U-Nets such as Swin-Unet [3] have been scarcely explored in this context, yet their
hierarchical shifted-window attention is well suited to the joint global–local reasoning
required by complex illumination. Moreover, state-of-the-art models almost exclusively
optimise pixel-level errors, which correlate poorly with human judgement; colour shifts
and texture flattening therefore persist. A composite loss that blends classic terms with
a perceptual metric (LPIPS) [48] is needed to align optimisation with visual quality. In
addition, many high-performing pipelines rely on heavy diffusion stages or multi-branch
designs, whereas a lightweight, single-stage Swin-Unet promises a superior accuracy-
efficiency trade-off – crucial for real-time or mobile applications.

These observations motivate our investigation of a perceptually optimised Swin-Unet
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that couples the representational power of hierarchical transformers with an LPIPS-aug-
mented composite loss, aiming to reduce residual artefacts while retaining computational
frugality.

1.1. Related Works

Enhancing photographs captured in severe darkness has matured from handcrafted
tone-mappers to sophisticated learning pipelines, yet every generation still negotiates
its own trade-offs between fidelity, robustness, and speed. Early grey-level transforma-
tions and Retinex-based formulations [9, 10, 13, 14, 17, 27, 44] adjust global brightness
through fixed, analytical rules that remain attractive for real-time use but inevitably
falter when illumination varies across a scene, leaving local noise and colour bias un-
resolved. Retinex theory itself – explicitly separating reflectance from illumination –
continues to underpin most modern networks: Retinex-Net [37] dissects, corrects, and
re-merges the two layers in three consecutive modules, achieving joint denoising and
brightening, although its separate branches occasionally amplify artefacts if any mod-
ule under-fits. Diff-Retinex [43] replaces convolutions with Transformer Decomposition
Networks (TDN) and diffusion-style adjusters that offer smoother global illumination at
the cost of substantial inference latency introduced by the diffusion iterations. Alterna-
tive encoder–decoder designs regress a coarse illumination map and refine it in a single
pass; their simplicity improves throughput but risks oversmoothing high-frequency de-
tail. Two-stream recurrent models mitigate this blur by letting a secondary branch track
salient textures, yet the recurrent roll-out lengthens both memory use and training time.

To preserve the fine structure of the image, in the subsequent work the multi-scale
processing and attention was introduced. Unrolled optimisation with residual blocks and
parallel multi-resolution streams [19, 45] retains context over very large receptive fields,
but the extra resolution hierarchy enlarges GPU memory consumption. CDAN [31]
adds dense connectivity and channel-attention to a U-Net skeleton, improving colour
consistency and perceptual sharpness while inflating parameter count. SNR-aware at-
tention [40] and residual dense attention units [50] explicitly weight features by esti-
mated noise statistics, reducing information loss on consumer cameras, yet the reliance
on a reliable SNR estimate can degrade accuracy when sensor characteristics change.
Laplacian-pyramid diffusion in PyDiff [52] progressively samples higher resolutions so as
to suppress global RGB shifts with fewer parameters than classic diffusion; nevertheless,
its iterative denoiser remains too heavy for battery-powered hardware.

The field is therefore witnessing a parallel push toward lightweight yet perceptu-
ally solid designs. LYT-Net [1] splits the Y and UV channels into separate paths with a
Channel-Wise Denoiser and a ViT-based fusion block, reaching mobile-class throughput;
its dependence on an explicit YUV conversion, however, complicates end-to-end RAW
processing pipelines. Self-DACE [38] alternates Adaptive Adjustment Curves with a
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CNN-based denoiser in a two-stage loop and learns solely from unpaired data, gener-
alising across cameras while effectively doubling runtime. Other lightweight attempts
compress feature maps aggressively but tend to underperform on real photographs where
noise, colour cast, and motion blur co-occur.

Collectively, these developments yield a toolbox that can brighten images, suppress
grain, and restore colour, yet three persistent challenges remain. First, colour distortion
survives in regions where statistical priors deviate from the true illumination spectrum.
Second, texture fidelity still drops whenever a network relies exclusively on pixel-wise
losses such as L1 or MSE, encouraging overly smooth outputs. Third, computational
overhead – either from deep cascades, recurrent loops, or diffusion steps – prevents many
state-of-the-art models from running interactively on edge devices.

Transformers equipped with windowed self-attention offer a plausible route toward
closing these gaps. The Swin Transformer family [21] combines convolution-like locality
with long-range context in a hierarchical fashion that scales linearly with image size,
and thus promises a more favourable accuracy–efficiency balance than global-attention
ViTs. Embedding Swin blocks in an encoder–decoder topology inherits the strong re-
construction ability of U-Nets while eliminating the multi-branch overhead common in
Retinex cascades or the multi-step burden of diffusion. Such a design can devote its full
capacity to suppressing colour shifts and preserving texture within a single pass, poten-
tially delivering competitive perceptual quality at a fraction of the compute budget. The
present work therefore positions a Swin-based U-Net at the centre of the low-light en-
hancement landscape, evaluating it against both heavyweight perceptual optimisers and
recent lightweight specialists, and highlighting where transformer attention can bridge
the longstanding trade-off between fidelity, robustness, and real-time performance.

2. Experimental setup

2.1. Datasets

To comprehensively evaluate our proposed method for low-light image enhancement,
we utilized two prominent benchmark datasets specifically designed for addressing chal-
lenges associated with underexposed photography: the LOL and SID datasets. These
datasets provide paired low-light and normal-light images, enabling supervised learning
and detailed performance assessments. Additionally, to determine the most effective ap-
proach to data integration, we explored various dataset combinations, consistently using
LOL for training, while systematically varying the inclusion and selection strategy of
SID images (single darkest, three darkest, random selection, or none).

2.1.1. LOL Dataset
The LOL dataset [37] consists of pairs of images captured under low-light and normal-
light conditions, primarily designed to support research focused on image enhancement
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techniques. It includes 500 image pairs, of which 485 are used for training and 15
for testing. Most images in this dataset depict indoor scenes and maintain a uniform
resolution of 400 × 600 pixels. Additionally, we employed an expanded version, known
as LOL-v2, which provides 689 training and 100 testing image pairs. LOL-v2 notably
enhances dataset variability by incorporating both synthetic and real-world low-light
scenarios, allowing for more robust evaluations of algorithmic performance under diverse
conditions.

2.1.2. SID Dataset
The See-in-the-Dark (SID) dataset [4] is a comprehensive collection of raw, short-ex-
posure images accompanied by corresponding long-exposure reference images, tailored
specifically for low-light enhancement studies. It comprises 5094 image pairs captured
under various illumination conditions using two different professional-grade camera sys-
tems. This dataset uniquely offers multiple exposure levels per scene, providing valuable
insights into the effectiveness of enhancement methods across varying degrees of dark-
ness. In our experiments, we specifically evaluated multiple strategies for incorporating
SID data into the training process. These strategies included selecting only the darkest
exposure per scene, the three darkest exposures, random exposure selection, and exclud-
ing SID data entirely. This allowed us to rigorously investigate the impact of different
dataset configurations on model performance and generalizability.

2.2. Proposed method

The goal of this work is to investigate whether a carefully tuned and loss-optimised
lightweight architecture based on Swin-Unet [3] can achieve performance competitive
with current state-of-the-art models for low-light image enhancement. In contrast to
many recent approaches that incorporate multiple complex modules or multi-stage de-
signs [1, 31, 52], we focus on a streamlined and efficient model that leverages the global
context modelling capabilities of Vision Transformers while maintaining the desirable
properties of U-Net’s encoder-decoder structure.

We hypothesize that, with the right combination of architectural design and a com-
posite loss function tailored to perceptual and structural fidelity, a pure transformer-
based model can deliver good results on both synthetic and real-world low-light datasets.

2.2.1. Model Architecture
Our proposed model builds upon Swin-Unet [3], a pure Transformer architecture origi-
nally developed for medical image segmentation. The architecture follows a symmetric
U-shaped design composed entirely of Swin Transformer blocks [21], organized into an
encoder, bottleneck, and decoder, interconnected through skip connections.

The encoder consists of a patch embedding layer followed by four hierarchical stages
of Swin Transformer blocks and patch merging layers, progressively reducing spatial
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resolution while increasing feature dimensionality. The bottleneck module operates at
the lowest resolution, capturing deep contextual features.

The decoder mirrors the encoder structure, utilizing patch expanding layers and Swin
Transformer blocks to restore spatial resolution and refine the feature representations.
Skip connections are introduced at each level to recover fine-grained spatial information
lost during downsampling.

Unlike traditional CNN-based U-Nets, Swin-Unet replaces convolutional layers with
self-attention mechanisms using shifted windows. This allows the model to efficiently
capture both local details and long-range dependencies without excessive computational
overhead. A final upsampling module brings the output back to the original image
resolution, followed by a 1×1 convolution to produce the enhanced image.

2.2.2. Loss function
The most commonly used loss functions in low-light image enhancement tasks are the
Mean Absolute Error (MAE), often referred to as L1-loss, and the Mean Squared Error
(MSE), also known as L2-loss. These functions have been widely adopted due to their
simplicity and effectiveness in pixel-wise intensity comparison.

Recent top-tier works, such as [52] and [2], prominently utilize the L1-loss, highlight-
ing its continued relevance in state-of-the-art models. The formula for L1-loss is given
by:

L1 = 1
N

N∑
i=1

|ŷi − yi| , (1)

where ŷi denotes the predicted pixel value, yi is the corresponding ground-truth value,
and N is the total number of pixels. For comparison, the L2 loss (mean squared error,
MSE) is defined as:

LMSE = 1
N

N∑
i=1

(ŷi − yi)2
. (2)

While L2-loss penalizes large deviations more heavily, leading to smoother outputs,
L1-loss is less sensitive to outliers and often results in sharper reconstructions. This dis-
tinction makes L1-loss preferable in tasks requiring better preservation of image details.

In addition to pixel-wise losses, perceptual losses have gained popularity for improving
the visual quality of enhanced images. In [31], the authors utilize a combination of
MSE and perceptual loss based on a pre-trained VGG19 network. The perceptual loss
compares feature maps from different layers of the VGG19 network for both generated
and reference images, ensuring better high-level feature alignment. The perceptual loss
is formulated as:

LVGG = 1
N

N∑
i=1

∥VGG(Îi) − VGG(Ii)∥2
2 , (3)
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where Îi and Ii represent the predicted and ground truth images, respectively, and V GG
denotes the feature extraction function using the VGG19 network.

The composite loss function used in this work combines MSE and perceptual loss as
follows:

Lcomposite = LMSE + λLVGG , (4)

where λ is a hyperparameter balancing the contributions of the two components. Ac-
cording to the authors, λ = 0.25 yields optimal results.

Similarly, [8] proposes a loss function designed for low-light image enhancement in
both HVI and sRGB colour spaces; we will refer to it as FN-loss in the remainder of this
paper to simplify the nomenclature. The total loss L is defined as:

L = λc · l(ÎHVI, IHVI) + l(Î , I) , (5)

where ÎHVI and IHVI are the predicted and ground truth images in the HVI colour space,
Î and I are the predicted and ground truth images in the sRGB colour space, and λc is
a weight balancing the two losses.

The loss function l for each colour space consists of multiple components:

l(X̂, X) = λ1L1(X̂, X) + λeLe(X̂, X) + λpLp(X̂, X) , (6)

where: L1 loss denotes the pixel-wise L1 loss, Le is the edge loss encouraging edge
preservation in the enhanced image, and Lp is the perceptual loss, ensuring perceptual
similarity by comparing features extracted by a pre-trained network (e.g., VGG19).
λ1, λe, and λp are weights controlling the contributions of the respective loss components.

The proposed approaches demonstrate the efficacy of combining multiple loss compo-
nents, including pixel-wise, edge, and perceptual losses, to achieve enhanced brightness,
colour accuracy, and edge sharpness in low-light image enhancement tasks.

A notable example of an advanced loss function design is presented in [1]. The
authors of LYT-Net used a hybrid loss function that combines multiple components to
jointly optimise image brightness, perceptual quality, structural similarity, and colour
fidelity. Their loss function can be expressed as:

Ltotal = LS + α1LPerc + α2LHist + α3LPSNR + α4Lcolour + α5LMS-SSIM , (7)

where: LS denotes the Smooth L1 loss, applying a linear or quadratic penalty depending
on the error magnitude to handle outliers effectively, LPerc is the perceptual loss enforcing
high-level feature consistency via VGG feature maps, LHist is the histogram loss aligning
intensity distributions of prediction and ground truth, LPSNR is the PSNR-based loss
penalizing deviations in peak signal-to-noise terms, Lcolour is the colour fidelity loss
minimizing channel-wise mean differences, and LMS-SSIM is the multiscale structural
similarity loss preserving structure across scales.
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Each component in this hybrid loss function addresses a specific aspect of the en-
hancement problem, ensuring a balanced optimization process. This approach demon-
strates how combining multiple loss terms can lead to excellent results in low-light image
enhancement.

Both methods, [1] and [20], achieve excellent performance, particularly on synthetic
datasets like LOLv2. However, models trained with simpler loss functions, such as the
L1-loss used in [52], tend to perform better on real-world datasets. This suggests that
while advanced hybrid loss functions can improve performance on controlled datasets,
simpler losses might generalize better in real-world scenarios. The superior real-world
performance of [52] is likely influenced by the entire network architecture and training
optimization strategy, including the choice of loss function.

In [20], the authors employ a vector quantization-based method for low-light image
enhancement and define separate loss functions across three stages:
Stage I Loss: The goal is to train a normal-light encoder, decoder, and codebook using

a combination of:
LStage I = Lrecon + βLvq , (8)

where Lrecon is the L2-loss (Mean Squared Error) ensuring pixel-wise reconstruction
accuracy, and Lvq is the vector quantization loss, which penalizes differences between
the encoded and quantized features.

Stage II Loss: To bridge the gap between low-light and normal-light feature spaces,
a distillation loss is introduced, alongside a query loss that optimises the matching
process:

LStage II = Ldistill + Lquery , (9)

Here, Ldistill minimizes the feature-level discrepancy using L1-loss, while Lquery en-
sures accurate codebook item selection by aligning distance maps between features
and codebook/query items.

Stage III Loss: In the final stage, a fusion branch combines features from different
scales, and a brightness-aware attention module is employed to refine the enhanced
image. The total loss in this stage is an L1-loss defined as:

LStage III = ∥Irec − IN ∥1 (10)

where Irec is the reconstructed image, and IN is the ground truth normal-light im-
age. Influence when parameters change: Eq. (10) has no explicit hyperparameters;
if weighted by λ3 in the total loss, increasing λ3 scales the gradient ∂L/∂Irec =
λ3 sign(Irec − IN ) and enforces pixel fidelity (typically higher PSNR/SSIM, smoother
textures), while decreasing λ3 lets perceptual/structural terms dominate (often sharp-
er appearance with slight PSNR/SSIM trade-off). Replacing ∥ · ∥1 with ∥ · ∥2

2 would
penalize large residuals more (more denoising/smoothness, potential edge blurring);
keeping L1 preserves edges and is outlier-robust. Stronger brightness-aware attention
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concentrates updates in dark regions (better shadow recovery, risk of halos if ex-
cessive); weaker attention spreads updates (fewer artifacts, possible residual shadow
noise). We use plain L1 (λ3 = 1 unless stated) and control the overall balance
via Eq. (11).
To better align the network output with human visual perception, we augment classic

pixel-wise objectives with a deep-feature component based on LPIPS [48]. The total
training signal is defined as:

Ltotal = αSLS + αP LLPIPS + αM LMS-SSIM + αN LPSNR + αCLcolour + αGLGrad , (11)

where LS is the Smooth-L1 loss, LMS-SSIM is the multi-scale structural similarity loss
(computed with detached gradients), LPSNR is the inverted PSNR loss, Lcolour penalizes
differences in channel-wise mean values, and LGrad enforces edge consistency using Sobel-
based gradients. The perceptual term LLPIPS uses the metric introduced by Zhang et
al. [48], based on a frozen AlexNet backbone [16]. During training, both prediction and
ground-truth images are forwarded through the LPIPS network in no grad mode, after
being rescaled from [0, 1] to [−1, 1], as required by the implementation. The choice of
the LPIPS loss weight αP was also subject to ablation, as we evaluated different values
to balance perceptual quality and training stability. A comprehensive comparison of
alternative loss functions and weight configurations is presented later in the paper.

2.2.3. Training setup
The complete pipeline is implemented in PyTorch 2.3 [28] with native AMP (Auto-
matic Mixed Precision), uDNN (CUDA Deep Neural Network library) [26], bench-
marking enabled, weight-initialization utilities from timm [25], and tensor rearrange-
ments from einops [29, 30]. The Swin-Unet backbone is realised as a pure-attention
U-Net: a patch-embedding stem feeds four encoder stages that alternate shifted-window
multi-head self-attention, MLPs and residual connections, each stage halving the spatial
resolution through patch merging; a bottleneck attends at the coarsest scale; four sym-
metric decoder stages then perform patch expansion while concatenating the correspond-
ing encoder activations; an expand-by-four layer followed by a 1×1 projection produces
the RGB output. Three capacities are explored by crossing initial widths 256, 384, 512
with depth patterns 2–4–6–2, 2–4–8–2 and 2–6–12–4, giving nine architectural variants.

Training uses the LOL-v1 split, both LOL-v2 subsets and the SID corpus; for SID
only the darkest exposure of every scene is paired with its long-exposure reference and
the official Part-1 / Part-2 division is kept for training and validation. All images are con-
verted to linear [0, 1], randomly flipped and rotated by multiples of 90◦, then partitioned
into non-overlapping 256×256 crops that serve as individual samples; evaluation runs on
a single uncropped patch without test-time augmentation. Four supervision regimes are
tested: the hybrid LYT objective, the six-term LPIPS-augmented loss of Eq. (11) with
αP ∈ 0.1, 0.2, 0.5, pure MSE and the colour-space FN-loss of Feng et al [8]. In every
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case AdamW starts at 1×10−4, warms up linearly for five epochs, decays cosinely to
1×10−6, applies weight-decay of 10−4, clips the gradient norm to 1.0 and accumulates
two mixed-precision micro-batches, yielding an effective batch of sixteen patches. Each
run spans one hundred epochs and the checkpoint with the lowest mean validation loss
over LOL-v1, LOL-v2-real and LOL-v2-synthetic is retained.

All experiments were run on a single NVIDIA RTX 4090. Mini-batch size was ad-
justed per model to saturate GPU memory; for the 512-channel backbone this meant
a batch size of 1, which noticeably slowed iterative testing. Given the tight hardware
and time budget – and the wish to cover nine capacities and four loss functions – some
hyper-parameters (e.g. the LPIPS multiplier) were fixed to representative values instead
of being exhaustively tuned. Access to stronger hardware would allow a broader sweep
over embed width, window size and loss weights, leading to a more thoroughly optimised
model.

3. Experimental results

In this section, we present extensive experimental validation of our proposed Swin-Unet-
based method for low-light image enhancement. We systematically evaluated the perfor-
mance impact of key architectural choices, different strategies for incorporating supple-
mentary datasets, and various loss functions. To directly address the reviewer’s concern
and isolate sources of improvement, we conducted two complementary ablations: (i)
with the architecture and data held fixed, we varied only the loss (MSE, FN-loss, LYT,
and LPIPS-weighted variants); and (ii) with the loss and data held fixed, we varied only
the architecture (embedding dimensions and transformer depths). The baseline for all
comparisons was the original Swin-Unet model configuration with embedding dimension
512 and hierarchical depths of 2-4-8-2, which previously demonstrated promising results
in similar vision tasks. The LOL-v1 and LOL-v2 datasets (both synthetic and real sub-
sets) were utilized as primary benchmarks. We specifically investigated the impact of
embedding dimensions and transformer depths, dataset integration strategies (particu-
larly regarding the SID dataset), and diverse loss function formulations, including Mean
Squared Error (MSE), FN-loss, LYT loss, and our proposed LPIPS-based perceptual
loss function. The evaluation metrics used were Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR), commonly adopted standards for image enhance-
ment assessment.

3.1. Comparative analysis

Initially, we focused on the effective use of the SID dataset within the training pipeline.
Four distinct approaches were tested using the optimal Swin-Unet architecture (embed-
ding dimension 512, depths 2-4-8-6) and LYT loss: (1) selecting the single darkest image
per scene from SID, (2) selecting the three darkest images, (3) randomly choosing SID
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Tab. 1. Comparison of SID dataset integration strategies using LYT loss.

SID Strategy SSIM LOL-v1 PSNR LOL-v1 SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth
Single darkest 0.829 21.43 0.834 22.55 0.897 22.46
Three darkest 0.799 23.16 0.825 22.63 0.897 22.40
Random 0.772 22.53 0.810 22.58 0.904 23.30
No SID 0.780 22.13 0.826 23.67 0.902 22.61

Tab. 2. Effect of embedding dimensions and depths (LYT loss, single darkest SID).

Embed dim / depths SSIM LOL-v1 PSNR LOL-v1 SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth
512 / 2-4-8-2 0.829 21.43 0.834 22.55 0.897 22.46
512 / 2-4-6-2 0.762 20.00 0.803 21.56 0.883 20.84
384 / 2-4-6-2 0.759 20.91 0.792 21.10 0.872 20.52
384 / 2-6-12-4 0.784 21.47 0.806 21.74 0.895 22.52

images, and (4) completely excluding SID. Table 1 summarizes these experiments, clearly
indicating that leveraging the single darkest SID image achieved consistently superior
results. This strategy yielded an SSIM = 0.829 and PSNR = 21.43 for LOL-v1, and
SSIM = 0.834 and PSNR = 22.55 for LOL-v2-real, significantly outperforming alterna-
tive approaches.

The observed differences between SID usage strategies highlight that carefully se-
lecting SID images based on luminance intensity notably improves performance and
training stability. Because the loss and architecture were held fixed here, these gains
are attributable to the data integration strategy rather than the perceptual loss choice.
Random SID selection, although performing well on synthetic datasets, showed reduced
consistency across real-world benchmarks.

We then explored varying model configurations by adjusting the embedding dimen-
sions and transformer depths, again utilizing the optimal SID selection (single darkest
image). We compared embedding dimensions of 384 and 512, and various depth config-
urations, specifically 2-4-6-2 and 2-6-12-4. As Table 2 demonstrates, significantly lower
embedding dimensions (384) substantially decreased SSIM and PSNR values, indicat-
ing insufficient representational capacity. Thus, such configurations were excluded from
further experiments.

Under a fixed loss (LYT) and data strategy, increasing architectural capacity from
depths 2-4-6-2 to 2-4-8-2 at embed = 512 improved SSIM/PSNR by +0.067/+1.43 (LOL-
v1), +0.031/+0.99 (LOL-v2-real), and +0.014/+1.62 (LOL-v2-synth). These deltas are
larger than those observed when swapping perceptual losses under a fixed architecture
(see below), indicating that most SSIM/PSNR gains stem from the architecture.

Next, we assessed several loss functions to determine their efficacy. Specifically, we
compared MSE, FN-loss, LYT loss, and our perceptual LPIPS-based loss with varying
LPIPS multipliers (0.1, 0.5, and 1.0). Results summarized in Table 3 illustrate that
simpler loss functions such as MSE and FN-loss underperformed notably, with MSE
consistently lowest due to its exclusive pixel-level error penalization, which leads to
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Tab. 3. Performance comparison of different loss functions.

Loss Function SSIM LOL-v1 PSNR LOL-v1 SSIM LOL-v2-real PSNR LOL-v2-real SSIM LOL-v2-synth PSNR LOL-v2-synth
LYT 0.829 21.43 0.834 22.55 0.897 22.46
LPIPS (0.1) 0.827 21.77 0.826 22.60 0.897 22.42
LPIPS (0.5) 0.789 21.13 0.827 22.32 0.895 22.58
LPIPS (1.0) 0.789 21.05 0.799 20.46 0.871 21.72
FN-loss 0.798 21.41 0.809 21.09 0.882 22.11
MSE 0.675 19.27 0.722 18.12 0.832 19.00

Tab. 4. NIQE and BRISQUE scores for the four loss functions (lower is better).

Loss Dataset NIQE BRISQUE
MSE LOL-v1 5.20 19.26
MSE LOL-v2-real 5.46 20.90
MSE LOL-v2-synth 5.02 15.84
FN-Loss LOL-v1 7.14 22.56
FN-Loss LOL-v2-real 7.36 25.78
FN-Loss LOL-v2-synth 6.30 17.36
LYT LOL-v1 5.79 15.36
LYT LOL-v2-real 6.16 18.00
LYT LOL-v2-synth 5.85 16.42
LPIPS LOL-v1 5.55 17.18
LPIPS LOL-v2-real 5.97 19.23
LPIPS LOL-v2-synth 5.58 16.08

overly smooth and detail-deficient images. Conversely, LYT and LPIPS-based losses
yielded the highest results, largely attributed to their composite nature – incorporating
pixel-wise accuracy, perceptual quality, structural similarity, and colour fidelity, thus
better aligning with human visual preferences.

With the architecture held constant (embed = 512, depths 2-4-8-2) and the same
data strategy, LPIPS at a small weight (0.1) slightly increased PSNR relative to LYT
while keeping SSIM essentially unchanged: +0.34 dB / −0.002 (LOL-v1) and +0.05 dB
/ −0.008 (LOL-v2-real); results on LOL-v2-synth were virtually tied (−0.04 dB / 0.000).
Heavier LPIPS weights (0.5–1.0) reduced effectiveness, emphasizing the importance of
balancing perceptual and pixel-level constraints. These comparisons show that while
architectural capacity dominates fidelity (SSIM/PSNR), a lightly weighted LPIPS term
can nudge optimization toward slightly better PSNR without sacrificing SSIM.

The four representative checkpoints were re-evaluated with the no-reference percep-
tual metrics NIQE [23] and BRISQUE [22] (Tab. 4). NIQE measures the deviation of an
image’s natural-scene statistics from a model learned on pristine photographs, whereas
BRISQUE regresses locally normalized luminance and contrast statistics to subjective
quality scores. Lower values in both cases correspond to higher perceptual quality.
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Across the entire evaluation spectrum, LYT and LPIPS deliver noticeably better
NIQE and BRISQUE scores than the multi-component FN-Loss of Feng et al., combining
L1, edge, and perceptual terms in both sRGB and HVI colour spaces. LPIPS attains
the lowest NIQE values among the perceptual objectives, whereas LYT secures the best
BRISQUE on LOL-v1 and LOL-v2-real, with LPIPS edging ahead on the synthetic
subset. Because the architecture was fixed in these comparisons, these perceptual gains
can be attributed primarily to the loss design.

Surprisingly, the plain MSE loss performs very competitively – particularly on LOL-
v2-synth, where it records the overall best NIQE of 5.02. This suggests that strict pixel
fidelity can suppress subtle non-linear artefacts sometimes introduced by perceptual
losses; such artefacts are often imperceptible to the human eye yet penalised by statistical
quality metrics. In summary, perceptually driven losses (LYT and LPIPS) still provide
clear gains over FN-Loss, but a well-tuned MSE baseline remains a strong contender
when judged solely by no-reference measures.

Detailed training convergence (Fig. 1) shows that, under the same architecture, the
LYT loss and LPIPS with weight 0.1 both stabilize training and maintain superior
PSNR/SSIM across epochs, with LPIPS slightly stronger in later epochs. Increasing the
LPIPS weight reduces effectiveness, underscoring the need to balance perceptual and
pixel-level terms. FN-Loss converges more gradually but remains competitive, whereas
MSE lags throughout. Convergence plateaus appear around epoch 90.

Taken together, the ablations make the source of possible improvements explicit:
most SSIM/PSNR gains come from scaling the Swin-Unet architecture (e.g., up to +1.62
dB PSNR when increasing depth at embed = 512), while perceptual gains (NIQE) are
predominantly induced by the LPIPS-based loss when the architecture is fixed. The best

Fig. 1. Validation PSNR and SSIM versus training epochs. Legend: LYT Loss (blue), LPIPS-based loss
with weight 0.1 (green), FN-Loss (purple), and MSE Loss (red). Curves are smoothed; metrics
are computed after each epoch on the full validation set comprising SID (darkest exposure),
LOL-v1, and the real and synthetic subsets of LOL-v2.
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results arise from their combination – adequate model capacity paired with a modest
LPIPS weight – yielding images that are both faithful and perceptually convincing.

These comprehensive results underscore the importance of model capacity, appro-
priate dataset integration, and carefully chosen composite loss functions in achieving
high-quality, perceptually convincing low-light image enhancement; a visual comparison
of our model’s outputs with the reference images is provided in Figure 2.

On a per-dataset basis, holding the loss fixed (LYT) and increasing capacity from
depths 2-4-6-2 to 2-4-8-2 at embed = 512 yields ∆PSNR/∆SSIM of +1.43/ + 0.067
(LOL-v1), +0.99/ + 0.031 (LOL-v2-real), and +1.62/ + 0.014 (LOL-v2-synth). With the
architecture fixed, LPIPS(0.1) improves NIQE vs. LYT by 0.24 (5.55 vs. 5.79, LOL-v1),
0.19 (5.97 vs. 6.16, LOL-v2-real), and 0.27 (5.58 vs. 5.85, LOL-v2-synth); BRISQUE
favors LYT on real images (15.36 vs. 17.18; 18.00 vs. 19.23), while LPIPS is slightly
better on synthetic (16.08 vs. 16.42). Although MSE attains a strong NIQE on LOL-
v2-synth (5.02), it lags markedly in SSIM/PSNR across datasets. For data integration,
selecting the single darkest SID exposure per scene is the most consistent strategy on
real benchmarks; random selection can score higher on synthetic data but is less stable
overall.

In practice, a compact recipe emerges: embed = 512 with depths 2-4-8-2, training on
SID (single darkest) and a light LPIPS weight (0.1). Heavier LPIPS weights (0.5–1.0)
reduce fidelity and stability, and convergence plateaus around epoch 90, after which
early stopping is beneficial. Qualitatively (Fig. 2), this setting mitigates colour shifts
and preserves edges, with only minor brightness deviations relative to ground truth.

3.2. Comparison with other algorithms

The quantitative comparison of our best-performing model – Swin-Unet trained with
the proposed LPIPS-based loss function – is presented in Table 5. Although the model
employing the LYT loss achieved similar performance, we prioritize the LPIPS-based
approach as it introduces a novel perceptual component specifically tailored to low-light
image enhancement. Furthermore, since the LPIPS-based loss was explicitly designed
and proposed within this work, it more clearly represents our contributions.

From the results, it is evident that our Swin-Unet architecture achieves competitive
but somewhat lower quantitative performance compared to state-of-the-art methods on
all considered LOL datasets. Specifically, our best model achieved PSNR and SSIM
of 21.77 dB and 0.827 on LOL-v1, 22.60 dB and 0.826 on LOL-v2-real, and 22.42 dB
and 0.897 on LOL-v2-synthetic. In contrast, leading architectures such as CIDNet-
oP [8], RetinexFormer [2], and LYT-Net [1] consistently surpass these metrics across all
benchmarks, reaching PSNR values around 28 dB and SSIM over 0.88 in many cases.

These observed discrepancies may suggest that the Swin-Unet architecture – origi-
nally proposed for medical image segmentation – might not be optimal in capturing the
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Fig. 2. Qualitative comparison layout and data sources. Columns: left – low-light inputs; centre –
outputs from the model trained with an LPIPS-weighted loss; right – corresponding well-exposed
ground-truth images. Rows: 1–2 from LOL-v1; 3–4 from LOL-v2-real; 5–6 from LOL-v2-synth.
Images are randomly selected examples from the LOL family.
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Tab. 5. Quantitative results on LOL datasets.

Methods PSNR (LOL-v1) SSIM (LOL-v1) PSNR (LOL-v2-real) SSIM (LOL-v2-real) PSNR (LOL-v2-syn) SSIM (LOL-v2-syn)
SID [4] 14.35 0.436 13.24 0.442 15.04 0.610
3DLUT [47] 21.35 0.585 20.19 0.745 22.17 0.854
Zero-DCE [11] 14.86 0.540 13.65 0.246 21.46 0.848
EnlightenGAN [15] 17.48 0.650 18.23 0.617 — —
KinD [51] 20.87 0.800 20.40 0.652 16.26 0.591
KinD++ [49] 21.30 0.820 20.15 0.678 19.44 0.830
Bread [12] 22.96 0.840 22.54 0.762 19.28 0.831
IAT [6] 23.38 0.810 21.43 0.638 19.18 0.813
HWMNet [7] 24.24 0.850 22.40 0.622 18.79 0.817
LLFlow [35] 24.99 0.920 21.60 0.643 19.15 0.860
DeepUPE [33] 14.38 0.446 13.27 0.452 15.08 0.623
DeepLPF [24] 15.28 0.473 14.10 0.480 16.02 0.587
UFormer [36] 16.36 0.771 18.82 0.771 19.66 0.871
RetinexNet [37] 18.92 0.427 18.32 0.447 19.09 0.774
Sparse [42] 17.20 0.640 20.06 0.816 22.05 0.905
EnGAN [15] 20.00 0.691 18.23 0.617 16.57 0.734
FIDE [39] 18.27 0.665 16.85 0.678 15.20 0.612
Restormer [46] 26.68 0.853 26.12 0.853 25.43 0.859
LEDNet [53] 25.47 0.846 27.81 0.870 27.37 0.928
SNR-Aware [40] 26.72 0.851 27.21 0.871 27.79 0.941
LLFormer [34] 25.76 0.823 26.20 0.819 28.01 0.927
RetinexFormer [2] 27.14 0.850 27.69 0.856 28.99 0.939
CIDNet-wP [8] 27.72 0.876 28.13 0.892 29.37 0.950
CIDNet-oP [8] 28.14 0.889 27.76 0.881 29.57 0.950
A3DLUT [32] 14.77 0.458 18.19 0.745 18.92 0.838
IPT [5] 16.27 0.504 19.80 0.813 18.30 0.811
Band [41] 20.13 0.830 20.29 0.831 23.22 0.927
LPNet [18] 21.46 0.802 17.80 0.792 19.51 0.846
SNR [40] 24.61 0.842 21.48 0.849 24.14 0.928
LLIE [20] 25.24 0.855 25.94 0.854 27.79 0.941
PyDiff [52] 27.09 0.930 24.01 0.876 19.60 0.878
MIRNet [45] 26.52 0.856 27.17 0.865 25.96 0.898
LYT-Net [1] 27.23 0.853 27.80 0.873 29.38 0.940
Ours Swin-Unet (LPIPS-based) 21.77 0.827 22.60 0.826 22.42 0.897

specific features necessary for low-light image enhancement. However, despite somewhat
lower quantitative results, the Swin-Unet architecture presents certain distinct advan-
tages. Its pure transformer-based design effectively leverages global context modelling
through self-attention mechanisms, enabling a strong representation of both local details
and long-range dependencies simultaneously. Moreover, the architecture is relatively
straightforward, highly modular, and significantly easier to train and fine-tune com-
pared to more complex multi-stage architectures, such as those incorporating diffusion
models or hybrid convolution-transformer networks.

Another key advantage of our model is computational efficiency and flexibility. While
it is plausible that utilizing a larger-scale Swin-Unet network (e.g., deeper or wider vari-
ants) could potentially yield better quantitative performance, our experimental investi-
gation was limited by available computational resources and time constraints. Therefore,
an extensive exploration of larger models was beyond the scope of this work.

Nonetheless, the performance achieved demonstrates the viability and potential of
the Swin-Unet approach – especially when paired with novel perceptual losses such as
our LPIPS-based formulation. Given its favorable balance between complexity, compu-
tational efficiency, and respectable image enhancement quality, Swin-Unet remains an
attractive candidate for further exploration, potentially yielding improved performance
if scaled appropriately.
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4. Conclusions and contributions

This study set out to verify whether a compact, single-stage Swin-Unet can remain
competitive in extremely low-light conditions once supervision is shifted from purely
pixel-based criteria to a perceptually oriented objective. The network we employed – an
off-the-shelf Swin-Unet restricted to an embedding width of 512 and an encoder–decoder
depth pattern of 2-4-8-2 – was purposefully kept small: with batch size one it already sat-
urates the memory of a single RTX 4090, and shortening turnaround times was essential
for running the nine-by-four grid of capacity-and-loss experiments reported throughout
the paper. Within these resource limits several contributions emerge.

First, the composite loss that blends LPIPS, Smooth-L1, MS-SSIM, inverted PSNR,
colour mean and gradient consistency proves almost as effective as the far more elaborate
LYT objective when both are applied to the same Swin-Unet backbone; on LOL-v1 and
LOL-v2-real the two formulations reach virtually identical SSIM, while the LPIPS variant
shows a slight PSNR advantage on two of the three benchmark splits. This confirms
that loss design can close much of the perceptual gap even when architectural capacity
is modest.

Second, the paper offers what is, to our knowledge, the first transformer-only baseline
that covers LOL-v1, LOL-v2-real, LOL-v2-synthetic and SID under a single, fully doc-
umented training protocol; future work can therefore compare new transformer variants
against numbers that are not confounded by convolutional extras or multi-branch tricks.

Third, the SID ablation confirms that keeping only the darkest exposure of each scene
yields more dependable generalisation than either random or multi-exposure sampling –
an observation that simplifies dataset preparation and, to our knowledge, had not been
quantified before. The study also clarifies the limitations of our approach. Even the
strongest configuration trails recent diffusion or multi-branch systems by roughly 5–6
dB in PSNR and a few hundredths in SSIM; visual inspection further reveals occasional
smoothing of fine texture, most notably in areas dominated by read-noise. These deficits
likely stem from choices that remained arbitrary because of limited time and compute
– for example, the fixed LPIPS weight, the 7×7 shifted-window size, and the cap on
embedding width. A wider sweep over those hyper-parameters, combined with experi-
ments on deeper or broader Swin backbones, appears the most direct route to closing
the remaining performance gap.

In short, although the model remains below the current state of the art, the study
shows that a judiciously balanced perceptual loss can bring a compact Swin-Unet within
striking distance of results obtained with far more elaborate objectives, establishes a
clean transformer-only benchmark for future scaling studies, and uncovers a simple
luminance-based strategy for sampling SID that reliably improves generalisation – in-
sights that will help subsequent research allocate computational resources where they
matter most.
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Abstract Traditional domain adaptation learning methods have a strong dependence on data labels.
The transfer process can easily lead to a decrease in training set performance, affecting the effectiveness
of transfer learning. Therefore, this study proposes a domain adaptation model that combines feature
disentangling and disentangling subspaces. The model separates the content and style features of im-
ages through disentangling, effectively improving the quality of image transfer. From the results, the
proposed feature disentangling algorithm achieved pixel accuracy of over 84% for semantic segmentation
of 14 categories, including roads, sidewalks, and buildings, with an average pixel accuracy of 85.2%. On
the ImageNet, the precision, recall, F1 score, and overall accuracy of the research algorithm were 0.942,
0.898, 0.854, and 0.841, respectively. Compared with the One-Class Support Vector Machine, the pre-
cision, recall, F1, and overall accuracy were improved by 8.4%, 10.3%, 27.8%, and 10.9%, respectively.
The proposed model can accurately recognize and classify images, providing effective technical support
for image transfer.

Keywords: image style transfer; deep domain adaptation; feature disentangling; domain shift.

1. Introduction

Image Style Transfer (IST) is a crucial research direction in computer vision and image
processing, which originates from in-depth exploration of artistic creation and image
processing techniques [23]. Driven by computer technology, people have begun to try to
combine computer technology with artistic creation, using algorithms to simulate and
implement image rendering of different art styles, thereby creating new works [18]. In
recent years, deep learning has shone brightly in IST. Convolutional Neural Networks
(CNN) can precisely extract content and style features, and combined with Generative
Adversarial Networks (GAN) to generate realistic images. Deep learning techniques
have achieved seamless transfer of style from one image to another while preserving the
original content [7]. This technology is not only widely used in fields such as art cre-
ation, film special effects, and game design, but also promotes the deep integration of
technology and art, bringing unprecedented creativity and possibilities to image process-
ing [30]. However, the deep learning method has a strong dependence on data labels, and
requires training and test samples to meet the same spatial distribution, which makes
it have poor generalization ability when facing massive Internet data. Therefore, some
scholars have proposed the Deep Domain Adaptation (DDA) method, which combines
domain adaptation and deep learning theories. This method can effectively solve dis-
tribution differences between the Source Domain (training dataset, SD) and the Target
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Domain (testing or application dataset, TD). It is widely used in fields such as natu-
ral language processing and image transfer [10]. However, current domain adaptation
learning still faces problems such as performance degradation in the training set due to
transfer processes and difficulty in separating unknown categories in open domains [19].
The research considers two aspects: close set domain and open set domain. A domain
adaptation model that integrates Close Set Domain Adaptation by Feature Disentangling
(CSDA-FD) and Open Set Domain Adaptation by Disentangling Subspace (OSDA-DS)
is proposed. This model separates content and style features through learnable weights
and introduces a Domain Shift (DS) to make the model lighter, thereby improving the
style transfer accuracy. The research aims to enhance the accuracy and adaptability
of adaptation learning methods, improve the transferability of adaptation models, and
provide innovative and more effective solutions for artistic IST. There are two main in-
novations. The first is to integrate CSDA-FD and OSDA-DS, and construct a domain
adaptive model from both closed domain and open domain perspectives, providing a new
solution for artistic IST. The second is to introduce a DS in the CSDA-FD algorithm,
which preserves important information of the source domain image during the transfer
learning process, effectively solving the decreased training set performance caused by the
transfer process in traditional domain adaptive learning.

The remaining part of this research is structured in four sections. The Section 2
introduces the current research on IST and DDA methods worldwide. The Section 3
introduces the construction process of the proposed deep domain adaptation model.
In Section 4 the experiments are conducted to verify its feasibility. The last Section 5
summarizes and discusses the paper, pointing out the shortcomings and future prospects.

2. Related work

IST is a computer vision technique that allows the style of one image to be applied
to another one while preserving the main features and details of the content image [3].
With the rapid development of computer technology, deep learning techniques have been
extensively applied to IST and have made significant progress. Liao and Huang [12] built
a semantic guided IST based on matching regions to address the semantic region match-
ing caused by the mismatch between content and style image object categories. This
method achieved semantic aware style transfer by performing semantic context matching
and combining it with a hierarchical local to global network architecture. Lin et al. [13]
proposed an IST based on semantic segmentation to address the semantic mismatch
in IST. The algorithm automatically extracted semantic information from images, and
used this information to guide style transfer, effectively solving the semantic mismatch.
Li et al. [11] built a GAN to address the diverse types and inconsistent distribution of
low-dose scanning image noise generated by different commercial scanners. The network
extracted noise patterns by performing noise encoding and fusing it into the genera-
tor, effectively improving the feasibility and denoising performance of low-dose scanning
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image synthesis. Ma et al. [16] proposed a parental and force embedding network to ad-
dress the semantic alignment between style and content in IST. This network achieved
semantic embedding of local style patterns by jointly modeling feature associations and
semantic correspondences, improving the visual quality and computational efficiency of
style transfer.

DDA is a technique in deep learning aimed at solving the inconsistent data distribu-
tion between the SD and TD. Deep domain adaptation methods have wide applications
in transfer learning, image recognition, natural language processing, and other fields,
especially in situations where data annotation costs are high or data acquisition is dif-
ficult. These methods can significantly optimize the generalization ability. Therefore,
some scholars have explored. Wu et al. [26] proposed an enhanced adaptation network
to address scarce TD labels in partial domain adaptation. The network optimized the
source data selection strategy through a deep reinforcement learning model and combined
domain adaptation techniques to automatically filter out irrelevant source data, thereby
effectively improving the accuracy and generalization ability of domain adaptation. Liu
et al. [14] built a three-stage unsupervised domain adaptation strategy to address the
difficulty and uneven distribution of pixel annotation datasets in remote sensing image
semantic segmentation. This method enhanced the correlation between feature map
channels through covariance channel attention modules, significantly improving the ac-
curacy image semantic segmentation. Shermin et al. [21] built an adversarial domain
adaptation model to address the knowledge transfer problem from a finite class SD to a
multi-class TD in Open Set Domain Adaptation (OSDA). The model introduced a multi-
classifier structure and weighting module to distinguish between known and unknown
target samples, improving the accuracy and adaptability of OSDA. In response to the
unavailability of TD labels and neglected class information in traditional methods for
unsupervised domain adaptation, Kang et al. [9] built a comparative adaptation network,
which designed an alternating update strategy and class aware sampling method. By
optimizing new indicators, the network effectively simulated intra-class and inter-class
domain differences, achieving unsupervised domain adaptation optimization.

In summary, some scholars have explored the style transfer of artistic images from the
perspective of deep learning and have made meaningful progress. However, despite the
significant theoretical advantages of deep domain adaptation methods in image transfer,
there are still not enough practical cases to combine the two. Domain adaptation learning
still faces problems such as decreased training set performance during the transfer process
and difficulty in classifying unknown categories in open domains. This study innovatively
proposes a domain adaptation model that integrates the CSDA-FD and the OSDA-DS.
From the perspectives of close set domain and open set domain, a new domain adaptation
learning method is designed and applied to IST to improve the accuracy and applicability
of image transfer.
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Fig. 1. The process of feature disentangling.

3. Domain adaptation model integrating feature disentangling and disentan-
gling subspace

The domain adaptation method includes two types: close set domain and open set do-
main. Firstly, a detailed introduction is given to the CSDA-FD. Then, for the adaptation
learning problem in the open set domain, the OSDA-DS algorithm is built.

3.1. Close set domain adaptation algorithm based on feature disentangling

Close Set Domain Adaptation (CSDA) is a subproblem in transfer learning that assumes
that all categories in the SD and TD are known and identical [27]. This means that there
are no new or disappearing categories between the SD and the TD during domain adap-
tation. In domain adaptation learning, Feature Disentangling (FD) is a commonly used
method that can optimize the generalization ability [2]. However, although the cate-
gory labels in CSDA are the same as those of the SD, current feature disentangling
methods still suffer from performance degradation in the training set in transfer learn-
ing [5]. Therefore, the research is conducted to optimize feature disentangling. The
novel CSDA-FD is proposed. Feature disentangling refers to decomposing features into
simpler components, typically including task related features and irrelevant features [15].
Feature disentangling is to separate features that remain unchanged in both the SD and
TD (domain invariant features) from features that only change in a specific domain (do-
main specific features) [25]. In this way, the model can better understand and adapt to
data distributions in different fields, thereby improving the generalization ability.

The process of feature disentangling is shown in Figure 1. Firstly, it obtains the
universal attributes of data by identifying cross-domain shared features. Secondly, it
focuses on extracting features that only appear in a specific domain to capture unique
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Fig. 2. Style features and content features.

information in that domain. This processing method helps the model to effectively
transfer and apply knowledge between different fields. E signifies Feature Extractor,
which is responsible for extracting features from both SD data and TD data. D is a
feature Disentangler, which decomposes the extracted features into private features and
common features. G is a Generator used to generate new data samples for training
classifiers. Through feature disentangling, the model can learn features that are useful
for both domains while reducing negative impacts caused by inter domain differences.

To better apply feature disentangling to IST, the concepts of style features and con-
tent features are introduced to decompose the features, as shown in Figure 2. Style
features refer to the features related to artistic expression techniques, color tones, color
distribution, and overall visual perception in an image. These features define the artistic
style of the image, including brushstrokes, color usage, brightness, and contrast. Content
features refer to the information directly related to the entity or scene represented by
the image in the image, which usually includes the basic visual elements of the image,
such as edges, textures, shapes, and recognition information of objects. Content features
are the semantic core of an image, which helps identify the main objects and scenes in
the image.

The image disentangling process based on the style and content features is shown
in Figure 3. The image disentangling process based on style and content features is
similar to the conventional feature disentangling process. The difference is that the
disentangler decomposes the extracted features into style features and content features.
Style features involve the visual style information of the image, while content features
contain the structural and semantic information. The generator receives disentangled
features and generates new images, which can be created based on the style features
of the TD and the content features of the SD. The reconstructed image of the TD is
the final output, which has the style features of the TD and the content features of
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Fig. 3. Feature disentangling into processes for style and content features.

Fig. 4. Structure of close set domain adaptation algorithm based on feature disentangling.

the SD. The entire process is to separate and recombine image features through feature
disentangling, so that the image can exhibit a new style while maintaining its original
content.

To solve the performance degradation of the training set during the migration process,
a DS network is introduced to optimize the accuracy of the SD and TD. The CSDA-
FD is displayed in Figure 4. The CSDA-FD consists of a DS, Encoder (E), feature
Separators (S), Generator, Discriminator (D), and Perceptual Network (PN). After the
original images are input into the network, DS processes them and preserves important
information to maintain the model’s classification ability for the SD. Next, the encoder
extracts the features of these images, and the feature separator divides the image features
into content features and style features. The generator maps features into the image
space. PN is applied to extract perceptual features of images and constrain content and
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Fig. 5. Structure of domain shift.

style similarity. This step is achieved through pre-training. Adversarial losses during
training are applied through discriminators.

The DS is displayed in Figure 5. The DS adopts a U-shaped network structure,
which is similar to a “U” shape in architecture. Therefore, it is named U-net. It has a
contraction path (encoder) and an expansion path (decoder), which undergo convolution
and nonlinear activation operations at each stage [4]. The input size of U-net is 1×572×
572, and the output is 1 × 388 × 388. The encoder section consists of five convolutional
blocks, the first four of which are composed of convolutional layers, ReLU activation
functions, and a 2 × 2 max pooling layer with a stride of 2. The convolutional layer use
a 3 × 3 filter. The fifth convolutional block consists of convolutional layers and ReLU
activation functions. The decoder section consists of four up-sampling blocks, each
consisting of an up-sampling layer, a convolutional layer, a ReLU activation function,
and skip connections. The convolutional layer uses a 3 × 3 filter. The output layer uses
1 × 1 convolution to convert the 64 × 392 × 392 feature map into an output image of
1 × 388 × 388. The condition satisfied by the DS is displayed in equation (1)

Y (IDSB) ∼ Y (IA), Y (IDSA) ∼ Y (IA) , (1)

where Y (IDSB) signifies the output of the TD image IDSB processed by DS. Y (IA)
signifies the output of the SD image IA. Similarly, Y (IDSA) represents the output of the
SD image IDSA processed by the DS. DS is constrained, as shown in equation (2)

IDSA ∼ IA, IDSB ∼ IA . (2)
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Fig. 6. Structure of OSDA-DS.

The study takes a loss function to deceive the discriminator in the model, as shown
in equation (3)

Ld
DS = E[ya log(D(xa)) + yb log(D(xb))] , (3)

where Ld
DS represents the domain adaptation loss function. E represents the expected

value. xa and ya are the sample data and label data of the SD, respectively. xb and
yb are the same. D(xa) and D(xb) represent the outputs of the discriminator for the
input of SD and TD. To make the TD image closer to the SD image, DS retains the
perturbation changes in the image during training, as shown in equation (4)

IDSB = IB + j , (4)

where j represents the perturbation change of the TD image.

3.2. Disentangling the subspace adaptation learning algorithm in open set
domain

CSDA-FD effectively separates the content and style features through nonlinear dis-
entangling, significantly improving the adaptability of the model in close set domain
scenarios. However, domain adaptation problems in the real world are often more com-
plex, especially when the TD contains unknown categories, that is, open set domains,
which make feature disentangling more difficult to separate the TD [8]. To address
this challenge, the OSDA-DS is proposed. This algorithm achieves precise separation of
known and unknown categories by constructing a disentangled subspace of features and
categories, making a breakthrough in the field of OSDA learning.

The OSDA-DS structure is shown in Figure 6. OSDA-DS performs feature extraction

Machine GRAPHICS & VISION 34(3):43–63, 2025. DOI: 10.22630/MGV.2025.34.4.3.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.3


P. Wang 51

Fig. 7. Structure of ParNet.

through a Parallel Network structure (ParNet), and then maps it to a feature subspace to
generate feature vectors Fs and Ft. The Global Global Vectors for Word Representation
(GloVe) model is used to encode the textual descriptions of the sample category and map
them to semantic feature vectors Gs and Gt in the category subspace. The study takes
ParNet for feature extraction, which employs a parallel subNet structure to effectively
reduce depth while maintaining high performance, effectively preventing the gradient
explosion caused by excessive depth [6].

The ParNet is displayed in Figure 7. The network depth is 12, and the initial layer
consists of a series of down-sampling blocks. The outputs of down-sampling blocks 2, 3,
and 4 are sent to streams 1, 2, and 3, respectively [29]. 3 is the optimal number of streams
for a given parameter budget. Each stream is composed of some representative visual
blocks with visual attention mechanisms. These blocks process these features at different
resolutions, and then use Fusion connections to fuse features from different streams [17].
Finally, the output is passed to the down-sampling block at depth 11. A disentangled
subspace based on the feature distribution obtained from ParNet is constructed. The
mapping network includes linear layers and activation layers, with output and subspace
dimensions set to 200. The existence and learnability of mapping functions are crucial
in domain adaptive learning. According to the general approximation theorem, neural
networks such as multi-layer perceptrons can approximate any continuous function with
arbitrary accuracy, providing theoretical support for mapping functions. Under the
reasonable assumption of continuity between feature space and subspace, and continuity
of mapping function, there exists a mapping function that can effectively capture the
complex relationships between features and achieve accurate mapping from features to
subspace. The mapping function maps the features extracted by ParNet to the feature
space and the category space, as shown in equation (5)
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{
αS

a = FS(xa), αS
b = FS(xb), αS

c = FS(xc) ,

αT
a = FT (xa), αT

b = FT (xb), αT
c = FT (xc) ,

(5)

where αS
a , αS

b , αS
c and αT

a , αT
b , αT

c are both mapped visual features, with the former in
the feature space and the latter in the category space. After mapping the function, the
distribution of visual features is readjusted to reduce the differences in feature space
caused by categories, making the model more sensitive and enhancing the discriminative
ability. In terms of learnability, appropriate loss functions are designed and optimization
algorithms such as gradient descent are used to optimize the parameters of the mapping
function, which can gradually approach the true feature mapping relationship. Under
certain conditions, optimization algorithms can ensure that the learning process of the
mapping function converges to a local or global optimal solution, thereby ensuring the
learnability of the mapping function.

To achieve the disentangling function of mapping, a distributed loss function is con-
structed, as shown in equation (6)

Ldist = LS
dist + LT

dist ,

LS
dist = max(0, d(αS

a , αS
b ) − d(αS

b , αS
c ) + m) ,

LT
dist = max(0, d(αT

a , αT
c ) − d(αT

a , αT
b ) + m) ,

(6)

where Ldist represents the total domain distance loss, which consists of the domain
distance loss LS

dist in the feature space and the domain distance loss LT
dist in the category

space. d(·, ·) is a distance function used to calculate the distance between features. m
is a margin used to promote greater separation of features between different categories.
The loss function further enhances the discriminative ability and optimizes the ability
to distinguish differences between different categories. GloVe is used to extract the
semantic features and can work synchronously with mapping networks. This model is a
word embedding model based on global statistical information, proposed by researchers
at Stanford University [20]. It learns the vector representation of vocabulary by analyzing
the co-occurrence information of vocabulary in large-scale text corpora [22]. The GloVe
is to use the co-occurrence matrix of vocabulary and obtain the low dimensional vector
representation of vocabulary through matrix decomposition [1]. These vectors capture
the semantic and syntactic relationships between words, allowing semantically similar
words to approach each other in the vector space [28]. The training process of GloVe
is relatively easy to parallelize, with fast training speed and the ability to utilize global
information, which makes it perform well on small datasets [24]. GloVe projects the
mapping onto the disentangled subspace to further enhance the model performance, as
shown in equation (7){

βS
a = GS(za), βS

b = GS(zb), βS
c = GS(zc) ,

βT
a = GT (za), βT

b = GT (zb), βT
c = GT (zc) ,

(7)
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where βS
a , βS

b , βS
c represent the semantic features of the feature space obtained by trans-

forming sample za, zb, zc in the SD through the mapping function GS of the SD. Similarly,
βT

a , βT
b , βT

c represent the semantic features of the category space obtained by transform-
ing the same samples in the TD through the mapping function GT of the TD. This
study constructs a new correlation loss function, aiming to align features and semantic
information in the subspace. The correlation loss function is shown in equation (8)

LS
dist = LS

con + LT
con ,

LS
con = max(0, d(αS

a , βS
a ) − d(αS

a , βS
b ) + m) ,

LT
con = max(0, d(αT

a , βT
a ) − d(αT

a , βT
b ) + m) ,

(8)

where LS
con represents the loss function of the feature space, and LT

con represents the loss
function of the category space. The association between these two functions establishes a
connection between visual and semantic features, and enables objects of the same type to
have a common mapping area. By constructing an association loss function, it is possible
to effectively connect visual and semantic features, thereby more accurately identifying
the features and categories of unknown test samples in two different subspaces. The
model cleverly projects the semantic features of the labels onto the disentangled sub-
space through two mapping functions. This process not only achieves effective separation
between visual features and categories, but also deeply explores the intrinsic connections
between the two. In the disentangled subspace, two subspaces are carefully constructed,
which comprehensively optimize visual features and categories respectively, and deeply
understand the relationship between the two. This design classifies features and cate-
gories more accurately on the test set when dealing with unknown samples, significantly
improving performance. The collaborative optimization of the two subspaces further
enhances the accuracy and generalization ability, making it more adept at handling
complex tasks.

4. Experimental verification and analysis of deep domain adaptation model

In Section 2, this study provides a detailed introduction to the construction process
of the domain adaptive model that integrates feature decoupling and decoupling sub-
spaces, including the detailed structure and implementation mechanisms of CSDA-FD
and OSDA-DS. Next, to verify the effectiveness and superiority of the proposed model,
a series of experiments are conducted to validate and analyze the model. To verify the
effectiveness of the domain adaptation model fusing the CSDA-FD and the OSDA-DS,
the performance of the domain adaptation algorithm under close set domain and open
set domain is verified. Finally, the research model is applied to artistic IST to further
verify its effectiveness in transfer applications. In data preprocessing, all input images
are scaled to 256 × 256 pixels and normalized to map pixel values to the range of [0, 1].
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Tab. 1. Experimental environment and parameters.

Experimental environment
Configuration item Configuration details

Processor Interl Corei7-8750H
Graphics processing unit NVIDIA Tesla K80
Internal memory 16 G
Hard disk 500 G
Operating system Ubuntu 20.04
Deep Learning Framework Pytorch 2.2.2
Programming Language Python 3.7

Experimental parameter
Configuration item Configuration details

Training rounds 100
Batch size 64
Learning rate 0.003
Dropout 0.2

For labeled data, the labels are converted into a single hot encoding form for model
training. This study uses the Adam optimizer and adds operations such as random hor-
izontal flipping, random rotation, and random color jitter during the training process
to increase data diversity. The initial learning rate is set to 0.003 and adjusted using
cosine annealing strategy. The batch size is 64 and the epoch is 100. In addition, the
Dropout technique with a dropout rate of 0.2 is used to prevent overfitting. When the
loss values on the training and validation sets change by less than 0.001 within 10 epochs,
the model is considered to have converged. The early stop condition is triggered when
the loss value on the validation set rises continuously for 15 epochs to avoid overfitting.
The experimental platform selects a deep learning framework based on Pytorch. The
experimental equipment and related parameters are described in detail, as displayed in
Table 1.

The study first evaluates the performance of the CSDA-FD algorithm in digital classi-
fication under close set domains. The research model is compared with multiple classical
domain adaptation methods. Three classical digital datasets are selected: MINST hand-
written digit dataset, SVHN dataset, and EMNIST dataset.

Each method is evaluated 10 times on each task to ensure the stability of the results.
The evaluation metric is numerical recognition accuracy, and three domain adaptation
tasks are performed, namely: MINST to SVHN, SVHN to MINST, and EMNIST to
MINST, as displayed in Table 2. In the three domain adaptation tasks of MINST to
SVHN, SVHN to MINST, and EMNIST to MINST, the numerical recognition accuracy
of the proposed CSDA-FD algorithm was 97.9%, 92.5%, and 98.1%, respectively, which
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Tab. 2. Experimental results of numerical recognition accuracy [%].

Method MINST to SVHN SVHN to MINST EMNIST to MINST

Source Only 81.1 67.8 83.2
DANN 83.0 75.1 85.5
DDC 82.1 77.4 86.2
MK-MMD 85.7 84.1 85.1
GAN 88.2 85.1 89.4
ADDA 90.2 88.3 91.6
DSN 87.9 86.5 90.7
CyCADA 92.1 88.8 92.5
DRANet 96.5 87.4 96.9
CDA 95.1 89.4 97.8
CSDA-FD 97.9 92.5 98.1
Target Only 98.5 92.3 99.4

was superior to that of other algorithms. To quantify the performance difference between
CSDA-FD and other methods, this study takes Cohen’s d to calculate the effect size and
reports the 95% confidence interval. Taking the MINST to SVHN task as an example, the
Source Only method is selected as the baseline (accuracy 81.1% and standard deviation
2.2%) and compared with the CSDA-FD method (accuracy 97.9% and standard deviation
1.6%). The calculated Cohen’s d value was 8.75, with a 95% confidence interval of [7.37,
10.13]. This indicates that the performance of the CSDA-FD method is significantly
better than that of the Source Only method, and the effect size is statistically significant.
Overall, in all three domain adaptation scenarios, the research model demonstrated good
numerical recognition accuracy, and the research algorithm was close to the accuracy of
training directly using the labeled TD. Especially in the SVHN to MINST task, the
accuracy of the research algorithm even exceeded that of training directly using the TD
by 0.2%. The semantic segmentation performance of the CSDA-FD algorithm was tested
in this study.

The experimental dataset was selected from the GTA5 road scene dataset, and 14
classic categories were selected for training. The evaluation metric is Pixel Accuracy
(PA), as displayed in Table 3. The semantic segmentation results for 14 categories
including roads, sidewalks, and buildings showed that the average PA of the CyCADA
algorithm was 80.0%, the DRANet algorithm was 81.0%, the CDA algorithm was 83.1%,
and the proposed CSDA-FD had a PA of over 84%, with an average PA of 85.2%.
Overall, the semantic segmentation performance of the research algorithm is excellent,
with high PA.

The memory usage of the algorithm in MINST to SVHN and SVHN to MINST
transfer learning is tested, as displayed in Figure 8. According to Figure 8a, in the
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Tab. 3. Experimental results on semantic segmentation accuracy [%].

Method Road Sidewalk Building Fence Tree Traffic light Vehicle

CyCADA 80.6 79.9 79.4 79.1 79.1 80.0 80.4
DRANet 81.3 81.7 81.5 80.1 81.4 81.3 81.6
CDA 83.1 82.6 83.1 83.6 83.9 83.0 83.5
CSDA-FD 84.4 85.7 85.3 85.7 85.4 85.5 85.2

Bicycle Motorcycle Pedestrian Animal Sky Trash can Street light

CyCADA 80.9 80.4 79.5 80.3 79.7 79.5 81.0
DRANet 80.1 81.1 81.4 80.2 80.5 81.9 80.5
CDA 82.5 83.3 83.2 82.2 82.7 82.1 83.9
CSDA-FD 85.7 85.2 84.1 85.7 85.6 84.0 85.8

[%
]

Time [s]
a Memory usage under MINST to SVHN.

[%
]

Time [s]
b Memory usage under SVHN to MINST.

Fig. 8. Comparison result of memory usage.

MINST to SVHN transfer learning, the average memory usage of the CyCADA algorithm
was 65.2%, the DRANet algorithm was 57.5%, the CDA algorithm was 49.9%, and the
proposed CSDA-FD had an average memory usage of 42.6%. In SVHN to MINST
transfer learning (see Fig. 8b), the average memory usage of the CyCADA algorithm
was 75.7%, the DRANet algorithm was 68.2%, the CDA algorithm was 58.3%, and the
proposed CSDA-FD algorithm was 47.5%. Overall, the research algorithm has the lowest
memory usage, which is beneficial for improving the efficiency of algorithm operation.

The study tested the OSDA-DS algorithm in an open set domain using the Office-31
as the experimental dataset. The Office-31 is a benchmark dataset used for domain
adaptation research, which includes images from different office environments such as
Amazon, Webcam, and Digital Single Lens Reflex. The testing indicators are average
accuracy and shared accuracy. Average accuracy is one of the most frequently applied
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[%
]

a Experimental results of average accuracy.
[%

]
b Experimental results of Sharing accuracy.

Fig. 9. Classification accuracy test results under open set domain.

evaluation indicators in classification problems, which represents the proportion of cor-
rectly classified samples to the total sample size. High accuracy indicates good perfor-
mance. Shared accuracy only considers the accuracy of known samples. The comparison
methods include the One-Class Support Vector Machine (OSVM) algorithm, the OSDA
optimized by Back Propagation (OSDA-BP) algorithm, and the domain adaptation algo-
rithm BP+OSVM, which combines back propagation and OSVM. The results are shown
in Figure 9, where in the horizontal axis, A-D signify the accuracy from the Amazon
domain to the scanner domain, A-W represents the accuracy from the Amazon domain
to the camera domain, D-W represents the accuracy from the scanner domain to the
camera domain, D-A represents the accuracy from the scanner domain to the Amazon
domain, and W-D represents the accuracy from the camera domain to the scanner do-
main. According to Fig. 9a, under five transfer learning tasks, the average classification
accuracy of OSVM was 33.5%, the OSDA-BP algorithm was 38.9%, the BP+OSVM
was 48.0%, and the OSDA-DS algorithm was 83.6%. According to Fig. 9b, the average
shared accuracy of the research algorithm was 85.6%, which was better than that of
comparison algorithms. Overall, the research algorithm has the highest average accu-
racy and shared accuracy in image classification in transfer learning, and can effectively
perform semantic recognition and classification in open set domains.

The Precision (P ), Recall (R), F1 score, and Overall Accuracy (OA) of the algorithm
are tested, as displayed in Table 4. According to this Table, on the Office-31 dataset,
the P, R, F1, and OA values of the OSVM algorithm were 0.928, 0.844, 0.788, and
0.775, respectively. The P, R, F1, and OA values of the OSDA-BP algorithm were 0.951,
0.879, 0.864, and 0.886, respectively. The P, R, F1, and OA values of the BP+OSVM
algorithm were 0.961, 0.907, 0.933, and 0.925, respectively. The P, R, F1, and OA values
of the proposed OSDA-DS were 0.978, 0.943, 0.960, and 0.955, respectively, which were
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Tab. 4. Test results for P , R, F1, and OA.

On the Office-31 dataset

Model P R F1 OA
OSVM 0.928 0.844 0.788 0.775
OSDA-BP 0.951 0.879 0.864 0.886
BP+OSVM 0.961 0.907 0.933 0.925
OSDA-DS 0.978 0.943 0.960 0.955

On the ImageNet dataset

Model P R F1 OA
OSVM 0.869 0.814 0.668 0.732
OSDA-BP 0.860 0.821 0.712 0.755
BP+OSVM 0.887 0.856 0.780 0.794
OSDA-DS 0.942 0.898 0.854 0.841

Tab. 5. Results of the ablation experiment.

Model Average accuracy P R F1

Without DS 0.782 0.942 0.908 0.928
Without GloVe 0.805 0.957 0.919 0.937
Without ParNet 0.768 0.934 0.903 0.922
Complete model 0.836 0.978 0.943 0.960

superior to those of other algorithms. On the ImageNet, the P, R, F1, and OA values of
the research algorithm were 0.942, 0.898, 0.854, and 0.841, respectively. Compared with
the OSVM algorithm, the P, R, F1, and OA values improved by 8.4%, 10.3%, 27.8%,
and 10.9%, respectively. Overall, the research algorithm showed good detection results
on both datasets, with superior performance and good transferability. To evaluate the
independent contributions of each component in the OSDA-DS algorithm, this study
conducts ablation experiments using the Office-31 dataset.

The complete model is compared with models without DS, GloVe, and ParNet. The
results of the ablation experiment are shown in Table 5. According to this Table, the
average accuracy OA, P , R, and F1 score of the complete model were the highest, at
83.6%, 97.8%, 94.3%, and 96.0%, respectively. The model performance was the worst
after removing ParNet, indicating that ParNet played a crucial role in feature extraction
and model performance. The results indicate that the three components of DS, GloVe,
and ParNet all play important roles in the OSDA-DS algorithm, jointly improving the
classification performance and transfer ability of the model in open set domains.
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a Experimental results of SSIM. b Experimental results of PSNR. c Experimental results of FID.

Fig. 10. Experiment results for SSIM, PSNR and FID.

Furthermore, the study tested the artistic image transfer effect of the domain adapta-
tion model by selecting images of painting styles such as crayon drawing, oil painting, and
sketching as the training dataset. The image size is set to 256 × 256, and photographic
images of landscapes, buildings, etc. are selected as the test data. A comparative exper-
iment is conducted to evaluate the quality of art images generated by transfer learning.
The comparison methods selected are Gatys algorithm, Dual Generative Adversarial Net-
works (DualGAN), and Cycle-Consistent Generative Adversarial Networks (CycleGAN).
The evaluation metrics are Structural Similarity Index (SSIM), Peak Signal-to-Noise Ra-
tio (PSNR), and Fréchet Inception Distance (FID), as displayed in Figure 10. According
to Fig. 10a, the average SSIM of the Gatys algorithm was 0.53, the average SSIM of
the DualGAN algorithm was 0.48, the average SSIM of the CycleGAN was 0.81, and
the average SSIM of the research model was 0.88. According to Fig. 10b, the average
PSNR of the Gatys algorithm was 14.51, the average PSNR of the DualGAN algorithm
was 15.11, the average PSNR of the CycleGAN algorithm was 22.91, and the average
PSNR of the research model was 22.90. According to Fig. 10c, the average FID index
of Gatys algorithm was 308.55, the average FID of DualGAN algorithm was 233.85, the
average FID of CycleGAN was 87.19, and the average FID of the research model was
0.88. Overall, the research model generates images with minimal noise and can produce
high-quality artistic images of different styles.

The study randomly selects three photographs for style transfer and generates images
with sketching, oil painting, and crayon drawing styles, as shown in Figure 11. The
research model was able to learn from images of different painting types, with good style
transfer effects. The generated images retained the structural and semantic information
of the original photographic images, with minimal distortion and reasonable color filling.
Overall, the new images generated by the research model have vibrant colors and distinct
lines, which can effectively facilitate the transfer learning of different artistic styles.

To further validate the superiority of the proposed model, this study takes the

Machine GRAPHICS & VISION 34(3):43–63, 2025. DOI: 10.22630/MGV.2025.34.4.3.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.3


60 Adaptation art image style transfer. . .

Fig. 11. Image style transfer rendering.

Tab. 6. Performance comparison results of five models.

Model SSIM PSNR FID

Neural style conversion 0.65 18.3 120.2
AdaIN 0.71 20.0 94.6
WCT 0.74 20.8 85.1
StyleGAN2 0.79 21.9 74.7
Research model 0.90 23.2 0.89

WikiArt dataset for testing, which includes 55 art styles. The proposed model is com-
pared with four state-of-the-art style conversion baseline models: neural style conversion,
AdaIN, WCT, and StyleGAN2. The performance comparison results of these five models
are shown in Table 6. The image quality generated by the proposed model in the WikiArt
dataset was still good, with SSIM, PSNR, and FID of 0.90, 23.2, and 0.89, respectively,
all higher than those of baseline models. The results indicate that the proposed model
has stronger style transfer ability and higher generation quality when processing complex
art style datasets, demonstrating certain superiority.
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5. Discussion and conclusion

In response to the performance degradation of the training set and the difficulty in clas-
sifying unknown categories in domain adaptation learning during the transfer of artistic
images, this study considered both close and open set domains to propose a domain
adaptation model that integrated the CSDA-FD algorithm and the OSDA-DS algorithm.
The model separated image features through feature disentangling and established a dis-
entangling subspace. A DS was introduced to make the model lighter, improving the
accuracy and efficiency of style transfer. Finally, the effectiveness and superiority were
verified through experiments. The performance evaluation results showed that the re-
search algorithm achieved an average numerical recognition accuracy of 96.2% in three
domain adaptation tasks, which was superior to that of other algorithms. The results
of the semantic segmentation task showed that the PA of the research algorithm was
above 84%, with an average PA of 85.2%. The semantic segmentation performance was
excellent and the PA was high. The test results under the open set domain showed that
the OSDA-DS algorithm had an average classification accuracy of 83.6% and an aver-
age sharing accuracy of 85.6%, which could accurately classify images and prepare for
subsequent image transfer. The quality of art images generated by transfer learning was
evaluated. The average SSIM was 0.88, the average PSNR was 22.90, and the average
FID was 0.88. The research model was able to learn from images of different paint-
ing types, with good style transfer effect, low generated image noise, and high quality.
Overall, the domain adaptation model fused the CSDA-FD algorithm and the OSDA-DS
algorithm for image transfer under different art styles can accurately recognize and clas-
sify images, thereby achieving style transfer. The proposed model has broad application
prospects in real-world fields such as business design and educational platforms. For
example, in the advertising industry, this model can quickly convert ordinary product
images provided by customers into images with specific artistic styles, thereby enhancing
the attractiveness of advertisements. Online art education platforms can also integrate
this model to provide students with an interactive learning tool, assisting in creation
and enhancing their art appreciation abilities. However, in practical operation, it may
not be possible to completely and accurately decouple image content and style features,
thereby affecting the accuracy and effectiveness of style transfer. Moreover, the model
requires high computational resources and time during the training phase, especially
when dealing with large-scale datasets, which limits its applicability in practical applica-
tions. Therefore, in future research, multi-scale analysis tools such as wavelet transform
can be further combined to decompose images into subbands of different scales and per-
form feature decoupling operations separately. The network structure of the model is
simplified and optimized to reduce redundant computational layers and parameters, and
improve the computational efficiency of the model.
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Abstract With the development of intelligent design and computer-aided design technology, adver-
tising image generation has gradually received attention and over 70% of digital advertisers regard
automated creative generation as a key direction for improving efficiency and precision delivery. To
address the shortcomings of existing advertising design methods in feature extraction and optimization
efficiency, a novel advertising design image generation method combining hierarchical feature extrac-
tion and simulated annealing algorithm optimization is proposed. Research is based on a hierarchical
feature model to extract multi-scale semantic information from advertising images, and optimize layout
through simulated annealing algorithm to improve the visual consistency of design images. The exper-
iment outcomes show that the raised model has the highest mean fitness, especially in the first set of
hyperparameter settings, with mean fitness values of 3.00 and 2.95 on the training and testing sets, re-
spectively. Meanwhile, the standard deviation and coefficient of variation are significantly lower than for
other algorithms, with minimal fluctuations and the strongest robustness. In addition, among the three
types of advertising images for product promotion, brand promotion, and directive sign advertisement,
the generated advertising images have significant advantages in visual clarity, perceptual quality, and
other aspects. As shown in the directive sign advertisement, the mean square error, peak signal-to-noise
ratio, structural similarity, and learning perceptual image patch similarity of this model are 0.025, 66.97,
0.67, and 0.10, respectively, which are significantly better than the other two comparison methods. The
research results indicate that the raised model is suitable for scenarios that require high-precision image
generation, providing an effective solution for intelligent advertising generation.

Keywords: hierarchical features, simulated annealing algorithm, advertising design images, feature
extraction, perceived quality.

1. Introduction

Advertising design plays a crucial role in modern marketing, and its effectiveness directly
affects users’ perception and acceptance of the brand [7]. With the rapid advancement
of digital technology, advertising image generation is gradually shifting from traditional
manual design to intelligence and automation [15]. This change has injected new vitality
into the advertising industry, but also brought more complexity and challenges. Adver-
tising images not only need to have visual appeal, but also need to effectively convey
core information within a limited space, such as promotional content, brand identity,
and product features. How to achieve efficient design of advertising images and meet
diverse commercial needs has become a hot topic of concern for both academia and
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industry. In existing research, the introduction of deep learning technology has signifi-
cantly facilitated the advancement of intelligent advertising design. For example, models
based on generative adversarial networks and transfer learning have shown significant
effects in the fields of image generation and style transfer [10]. However, these methods
mainly focus on texture refinement or single feature optimization of images, making it
difficult to comprehensively handle the complex characteristics of multi-dimensional and
multi-level advertising images. In the generation of advertising images, it is not only
necessary to accurately extract design elements such as text, background, and subject,
but also to achieve coordination between visual elements through reasonable layout op-
timization [11]. Existing methods commonly suffer from incomplete feature extraction,
unstable generation quality, and low computational efficiency when dealing with complex
advertising scenarios.

Zhang et al. [22] proposed the Emocolor system, which achieved matching between
feelings and hues through hue arrangement recommendations based on emotional vo-
cabulary and images. This method combined interactive genetic algorithm to optimize
emotional color schemes, which could help professional designers generate color schemes
that met users’ emotional needs, and was successfully applied in fields such as adver-
tising design. The research results indicated that emotion driven color design could
significantly enhance the visual appeal and user satisfaction of advertising images.

In recent years, Denoising Diffusion Probabilistic Models (DDPM) have shown great
potential in the field of image super-resolution, but sampling efficiency remains a key
bottleneck restricting their practical applications. Song et al. [17] integrated rough set
theory with DDPM and proposed a rough set DDPM super-resolution method. This
method minimizes the roughness of the sample set through rough set theory, optimizes
the segmentation of the sampling sequence, and uses particle swarm optimization algo-
rithm to screen the optimal sub columns for iterative denoising. The results indicate that
compared to traditional autoregressive models, this method can generate higher qual-
ity high-resolution images with fewer sampling steps, achieving a good balance between
image quality and processing speed.

In addition, hierarchical feature extraction techniques are widely applied in image
processing and feature recognition [18]. Lin et al. [8] raised a layered attribute selection
approach utilizing label distribution learning to address the issue of high-dimensional
feature space and class imbalance. This method successfully alleviated the problem
of sample imbalance, improved the distinguishing capability of attribute subsets, and
enhanced the performance of downstream categorization tasks through the distribution
of labels in a hierarchical structure. Research showed that hierarchical feature selection
could effectively capture the multi-level structural information of images, which was
helpful for extracting complex features from advertising design images.

Simulated Annealing (SA) algorithm, as a classic stochastic optimization algorithm,
is widely used in layout optimization and feature adjustment [14]. Iyappan et al. [6]
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proposed a hybrid algorithm that combined SA and Spotted Hyena Optimization (SHO)
to solve asset allocation and job dispatch problems in cloud environments. This method
ensured load balancing of virtual machine resources by balancing exploration and de-
velopment, avoiding overload or underload phenomena. The findings indicated that the
algorithm was capable of significantly enhancing resource allocation and operational ef-
ficiency of tasks, while reducing energy consumption and response time, which was of
great significance for asset allocation and job dispatch in cloud computing environments.

In summary, there are problems in the current advertising design image generation
methods, such as low optimization efficiency and difficulty in fully extracting multi-level
features from advertising images. In view of this, an innovative method combining struc-
tured hierarchical feature modeling with simulated annealing optimization mechanism
has been proposed. By constructing a multi-layer semantic abstraction feature model,
the system integrates semantic information such as main elements, copy, and background
in advertising images, and achieves multi-scale semantic representation through hierar-
chical annotation and feature abstraction. At the same time, the simulated annealing
algorithm based on KDE density estimation is introduced in the optimization stage,
which is not only used for global search of design parameters, but also constructs the
objective function and acceptance criteria through the density evaluation function, ef-
fectively improving the adaptability of the model to complex design constraints and
the search performance for global optimal solutions. The research aims to improve the
quality and efficiency of advertising image generation by utilizing hierarchical semantic
features and powerful optimization techniques.

2. Methods and materials

2.1. Construction of advertising design image feature model based on hier-
archical features

The design elements of advertising images serve as the cornerstone for constructing fea-
ture models and are crucial for delving deeper into the realm of advertising image design.
By quantifying these design elements, we can enhance their organization and practical
applicability. The model illustrating the design features of advertising images is depicted
in Fig. 1 [4]. In this Figure it can be seen that, as the hierarchy increases, the abstraction
level of features also increases, which is closer to people’s subjective understanding. At
the same time, the difficulty of objective quantification also increases. Currently, many
deep learning driven image generation techniques rely on pixel data for training, enabling
functions such as image creation, style conversion, and color adjustment. Advertising
images contain rich and diverse design elements [1], which increases the difficulty for
users to annotate the elements.

To simplify the annotation process, the study categorizes all design elements into
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  Fig. 2. Example of annotation results.

three main types: subject, copy, and background. An example of annotation is shown
in Fig. 2, where the subject usually refers to the product, model, character, or product
that occupies the core position. The copywriting section covers product descriptions,
trademarks, and promotional information. In advertising images, the background refers
to the entire background area, while the sub-background is located below the product or
text, forming a sharp contrast with the main background, usually with colors or borders
to highlight the product and text. The structured representation of various element
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  Fig. 3. Structured element feature data.

feature data is shown in Fig. 3 [19], where the annotation data of the advertising image
is saved in JSON format in a CSV file for the purpose of constructing a feature model
in the future. The three datasets focus on subject elements, copywriting elements, and
background elements, each containing spatial location information of the corresponding
elements.

2.2. Feature model optimization based on geometric features and SA algo-
rithm

A probabilistic model, grounded in the geometric attributes of elements and utilizing
quantified tomographic features, is established with the objective of being utilized within
the realm of advertising image design. This model converts sampled data into a contin-
uous probability distribution using KDE to predict feature distributions under specific
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conditions [16]. The observed data are smoothed through KDE to achieve probability
estimation of the true distribution. Assuming there is a set of independent sample points
that follow the distribution F (x), their corresponding probability density functions are
shown in Equation (1) [21]:

F (x) =
∫ x

−∞
f(t) dt , (1)

where x represents the sample point, and f(t) signifies the likelihood of the sample point
occurring in x when x = t, that is, the density function. Given that the true probability
density function F (x) is unknown, a non-parametric distribution estimator can serve as
a proxy for F (x), as shown in Equation (2):

Fn(t) = 1
n

n∑
i=1

1xi≤t , (2)

where n means the total quantity of sample points, from which the final probability
density can be derived as shown in Equation (3):

f(x) = 1
nh

n∑
i=1

K

(
x − xi

e

h

)
, (3)

where f(x) represents the final density function, xi
e is the i th point of the sample data,

and K is the kernel function. To ensure that the sum of integrals of the kernel function
reaches the unit value, it is possible to replace the original kernel function K(x) with
another type of density function. h represents bandwidth, used to control the smoothness
of the kernel function. The kernel density estimation (KDE) can be generalized from
univariate variables to multidimensional variables, as expressed in Equation (4) [9]:

fH(x) = 1
n|H| 1

2

n∑
i=1

K

(
x − xi

e

H
1
2

)
, (4)

where H represents a symmetric and positive d × d dimensional matrix, and according
to the multivariate normal distribution K function, it is shown in Equation (5):

K

(
x − xi

e

H
1
2

)
= 1

(2π) d
2

exp
[
−1

2(x − xi
e)′H−1(x − xi

e)
]

, (5)

where d represents the dimension of the data, and (2π) d
2 is the normalization factor of

the Gaussian kernel. By analyzing the color characteristics of multiple brand advertis-
ing images and using KDE for modeling, the color design features of different brand
advertisements are revealed. In visual design, there are interdependent and reinforcing
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relationships between design elements. To establish the relationship between these el-
ements and the target attributes, a predictive probability model can be built, utilizing
conditional features to forecast the distribution of the target variables, as expressed in
Equation (6):

F (x | C = a) , (6)

where a represents the conditional feature and C is the constraint condition. If a is
regarded as the center position of the primary component in the picture, then function
F (x|C = a) can be applied to predict the probability distribution characteristics of the
center position of the text element under given conditions. Each conditional feature
corresponds to a target feature and clustering category. Multiple logistic regression is
used to analyze triplet data and train a classifier to predict the probability of the target
feature in different clustering categories.

A Gaussian kernel can be constructed based on clustering standard deviation to
form a mixture Gaussian model that approximates a continuous probability density
distribution, as shown in Equation (7):

P (x | C = ae) =
∑
i=10

exp
(

−∥x − mi∥2

2σ2

)
· p(mi | C = ae) , (7)

where P (x|C = ae) represents the probability density of x under given condition C = ae,
σ represents the standard deviation, i represents a specific category in cluster analysis,
and p(mi|C = ae) is the multiple logistic classification function. In order to optimize
KDE functions and conditional probability density, the study drew on the ideas of SA and
adopted a geometric cooling strategy, with the updated formula shown in Equation (8):

Tk+1 = α · Tk , (8)

where Tk and Tk+1 represent the temperatures after the kth and (k + 1)th iterations,
respectively. The cooling coefficient α is empirically set to 0.95, and the initial temper-
ature is set to 1.0. The iteration is terminated when the temperature drops below 10−3.
In the initialization phase, the initial solution is randomly sampled based on the mean
of the feature distribution smoothed by KDE, ensuring that the search starts from high
probability regions. Using the results of the density estimation function as evaluation
indicators, the design parameters that can maximize the evaluation indicators are identi-
fied through an iterative optimization process. Firstly, a candidate solution is randomly
sampled from the neighborhood of the current solution, as shown in Equation (9) [13]:

x′ = xk + ε , (9)

where x′ represents the candidate solution, xk represents the current solution, and ε is a
random perturbation coefficient that follows a Gaussian distribution. The calculation
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process for the incremental score of evaluation x′ compared to xk is shown in Equa-
tion (10):

∆F = [f(x′) + λP (x′ | C)] − [f(xk) + λP (xk | C)] , (10)

where ∆F is the score increment between the potential and the current solutions, and
λ is the balance coefficient. When ∆F > 0, then xk+1 = x′. After updating the solution,
the temperature is updated according to the cooling strategy, as shown in Equation (11):

Tk+1 = αTk , (11)

where Tk represents the temperature of the k th iteration, and α represents the tem-
perature decay factor. The final expression of the model objective function is in Equa-
tion (12):

x∗ = arg max
x

[f(x) + λP (x | C)] , (12)

where x∗ represents the optimal solution of the objective optimization problem. By
simulating the random sampling and iterative optimization process of annealing, the
global optimal solution of the objective function, i.e. the best feature, is searched in the
solution space.

2.3. Advertising design image generation method based on hierarchical fea-
tures and SA algorithm

The optimal features predicted based on the optimized feature model can not only enable
image elements to be reasonably configured according to specific layout rules, but also
enhance the overall visual effect of the image. By inputting these features, the color
information of the image can be accurately restored and optimized. In this process, the
study utilizes the global optimization characteristics of the SA algorithm to effectively
avoid the problem of local optima and explore the optimal layout scheme and feature
selection. The container layout results optimized according to the SA algorithm are
shown in Fig. 4. The red border in this Figure indicates the placement area of the image
container, while the yellow border is used to indicate the placement area of the document
container. Np represents the total number of document containers in a single image. In
graphic advertising design, different layout features can be identified by clustering the
positional relationships between elements, such as left and right, center, and top and
bottom layouts. Meanwhile, considering the textual content in the image, the study
explores the method of multi-line text layout based on container features predicted by
the model, in order to finalize the arrangement of flat advertising visuals.

The user interface created through various compositions is shown in Fig. 5. Each
layout cluster is visualized in this Figure to display its estimated container layout fea-
tures. After selecting a specific cluster, the algorithm constructs a geometric feature
model grounded on the clustering results. In order to evaluate the consistency between
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Fig. 4. Layout results based on element containers.
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Fig. 5. Interactive interface for image layout clustering. (a) Single-text layout; (b) multi-text layout.

input characters and graphic layout features, the algorithm designs a probability model
as shown in Equation (13):

p(Ti | Li) ∝
n∏

k=1
exp

(
−1
2σ2

∣∣∣∣mk − hk
i

dk
i

∣∣∣∣2
)

, (13)

where Ti represents the target variable, Li represents the given condition, mk represents
the target value of the k th feature, hk

i means the observed value of the i th sample on
the k th feature, and k is the scale factor. In the case where an image contains multiple
text containers, the algorithm randomly cuts characters into rows and selects the optimal
value through feature sampling as the output of the layout geometry. During the visual
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d the fitness of different algorithms varied with the iteration times, as shown in Figure 6. 
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Fig. 6. The variation of fitness with the iteration times. (a) Training set; (b) test set.

interaction phase, designers have the ability to choose various sets of color attributes
simply by clicking on buttons. These selected color perception attributes are then in-
tegrated into the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality
reduction algorithm’s space, resulting in the creation of corresponding two-dimensional
visual representations [20].

3. Results

A detailed analysis was conducted on the variation of fitness of various algorithms with
the number of iterations in the study. The Improved Hunger Games Search Algorithm
(IHGS), the Hybrid Version of Binary Flamingo Search with a Genetic Algorithm (HBFS-
GA), and the proposed model are run on the ADE20K dataset [23, 24, 25]. The perfor-
mance optimization of different algorithms was verified by comparing the trend of fitness
changes with iteration times. Simultaneously selecting advertising images of different
categories, the application effects of three methods were compared and analyzed.

3.1. Performance testing of feature models based on hierarchical features and
SA optimization

To confirm the performance of the optimization model proposed by the research, a perfor-
mance comparison test was conducted between the feature model based on hierarchical
features and SA optimization, IHGS [5], and HBFS-GA [2]. For the study, the ADE20K
dataset was chosen and split into training and testing (Tr-Te) sets at a ratio of 7:3. The
limit for iterations count was set to 200, and the fitness of different algorithms varied
with the number of iterations, as shown in Fig. 6. In subfigures 6a and b the fitness
changes of three algorithm models on the Tr-Te sets are shown. In the Tr-Te sets, the
model proposed by the research exhibited faster convergence speed and higher fitness

Machine GRAPHICS & VISION 34(4):65–84, 2025. DOI: 10.22630/MGV.2025.34.4.4.

https://doi.org/10.22630/MGV
https://doi.org/10.22630/MGV.2025.34.4.4


J. Zhang 75

Tab. 1. Adaptation changes under different hyperparameter settings.

Algorithm Hyperparameter
Combination

Data Set Mean Fitness Standard
Deviation

Coefficient
of Variation
(CV)

IHGS
Weight=0.5,
particles=50

Training set 2.75 0.11 0.036

Test set 2.73 0.12 0.044

HBFS-GA

Crossover
rate=0.8,
mutation
rate=0.1

Training set 2.65 0.12 0.045

Test set 2.61 0.13 0.054

Ours

α = 0.9, T0 =
300, λ = 0.5

Training set 3.06 0.02 0.006

α = 0.7, T0 =
500, λ = 0.7

Test set 2.82 0.04 0.014

values than IHGS and HBFS-GA, demonstrating strong optimization ability and supe-
rior performance. In the test set, the fitness of this model reached 0.6, far exceeding
the other two, demonstrating good generalization ability. In addition, the fitness curve
of the model is smooth and stable, indicating stronger stability and global search abil-
ity, while the fluctuations of IHGS and HBFS-GA indicate instability in local optimal
solution search. To evaluate the fitness changes of various algorithms under different hy-
perparameter settings, the influence of hyperparameter sensitivity on the target fitness
value was tested, and the outcomes are summarized in Tab. 1. As it can be seen, the
mean fitness of the IHGS Tr-Te sets was 2.75 and 2.73, respectively, with the result for
the testing set slightly lower than that for the training set. The standard deviations of
the Tr-Te sets were relatively small, with values of 0.11 and 0.12, and CV of 0.036 and
0.044, respectively, indicating small fluctuations in fitness and good stability. The mean
fitness of HBFS-GA on the Tr-Te sets was 2.65 and 2.61. The standard deviations of the
Tr-Te sets were 0.12 and 0.13, respectively, and the CV were 0.045 and 0.054, indicating
slight fluctuations in fitness.
edremParagraph added.

Two sets of hyperparameters were set for the model proposed by the research. The
mean fitness of the first set of hyperparameters on the Tr-Te sets was 3.06 and 2.95,
significantly higher than that of IHGS and HBFS-GA. The standard deviations were 0.02
and 0.03, and the CV were 0.006 and 0.012, respectively, which were notably lower than
the others, demonstrating that the model had the smallest variability and uncertainty
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Figure. 7 The change in mean execution time as the number of iterations increases 
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Fig. 7. The change in mean execution time as the number of iterations increases. (a) Training set;
(b) test set.

in fitness. In the second set of hyperparameters, the mean fitness of the Tr-Te sets
were 2.85 and 2.82, which were also higher than IHGS and HBFS-GA, but lower than
the first set of hyperparameters. In order to analyze the trade-off between optimization
performance and time consumption of feature models based on hierarchical features
and SA optimization, the running time of three algorithms when reaching the target
fitness value was compared. The outcomes are shown in Fig. 7. The subfigures 7a
and b, respectively, indicate the variation of the average running time (ART) of three
algorithms on the Tr-Te sets with the number of iterations. In Fig. 7a, the ART of the
proposed model remained the lowest, fluctuating between 55 s and 60 s. As the iteration
numbers rose, the running time fluctuated less and gradually stabilized. The running
time of HBFS-GA was within 65 s – 70 s, with small fluctuations. The running time of
IHGS was the highest, with some fluctuations between 75 s – 80 s and poor stability.
The running time of the model proposed by the research remained stable as the number
of iterations increased, indicating that its SA computational complexity was relatively
low. In Fig. 7b, compared to the performance system on the training set, the ART of
the proposed model was the lowest, between 55 s – 58 s. The running time of HBFS-GA
was within 65 s – 68 s, and the curve is relatively stable. The running time of IHGS was
still the highest, between 75 s – 80 s, with a slight downward trend compared to the ART
of the training set, but overall fluctuations were significant. Both in the Tr-Te sets, the
ART of the proposed model was consistently significantly lower than that of HBFS-GA
and IHGS. This indicated the time efficiency of introducing SA in optimizing advertising
design feature tasks, especially showing good stability as the iteration numbers rose.

In terms of computational efficiency, the study tested three algorithms on four indica-
tors: inference time, parameter count, memory usage, and floating-point operations. The
outcomes are shown in Tab. 2. IHGS had relatively slow inference time, with inference
times of 1.12 s and 1.14 s for the Tr-Te sets. The minimum number of parameters was
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Tab. 2. Comparison of computational efficiency of different algorithms.

Algorithm Data Set Inference
Time (s)

Parameter
Count
(Millions)

Memory
Usage
(MB)

Floating-
Point
Operations
(GFLOPs)

IHGS Training set 1.12 1.9 104 7.5
Test set 1.14 2.1 112 7.4

HBFS-GA Training set 1.07 2.6 124 8.8
Test set 1.05 2.8 131 9.2

Ours Training set 0.94 2.5 124 8.1
Test set 0.92 2.4 125 8.4

1.9 M for the training set and 2.1 M for the testing set. Meanwhile, IHGS also had the
lowest memory usage, with Tr-Te sets of 104 MB and 112 MB, respectively. Compared
with IHGS, HBFS-GA improved inference time, with inference times of 1.07 s and 1.05 s
for the Tr-Te sets, respectively. HBFS-GA had a large number of parameters on the Tr-
Te sets, which were 2.6 M and 2.8 M, respectively. In terms of computational complexity,
the floating-point operations of HBFS-GA significantly increased, with a training set of
8.8 GFLOPs and a testing set of 9.2 GFLOPs. Finally, the model proposed by the re-
search performed the best in inference time, with inference times of 0.94 s and 0.92 s for
the Tr-Te sets, making it the fastest among the three methods. The number of parame-
ters was 2.5 M and 2.4 M, respectively, and the memory usage was similar to HBFS-GA.
The Tr-Te sets were 124 MB and 125 MB. In terms of computational complexity, ours
had lower floating-point operations than HBFS-GA but higher than IHGS, with a value
for the training set of 8.1 GFLOPs and that for the testing set of 8.4 GFLOPs. The
model raised by the research achieved a good balance between inference time, parameter
size, and computational complexity, and had better computational efficiency.

3.2. Effect analysis based on hierarchical features and SA advertising image
generation

To confirm the validity of hierarchical features and SA advertising image generation,
this study selected three different types of advertising images from the ADE20K dataset:
product promotion, brand promotion, and directive sign advertisement, and compared
and analyzed the generation effects of different algorithms. In Fig. 8, the hierarchical
feature extraction effects of different algorithms on elements in images were compared
and analyzed. The red border represents the text annotation, and the green border
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Fig. 8. Hierarchical feature extraction effect. (a) Product promotion, source: [26]; (b) brand promotion,
source: [27]; (c) directive sign advertisement, source: [28]. All photos under the licence CC0.

represents the image annotation. Subfigures a, b and c are the element annotation re-
sults of three types of advertising images: product promotion, brand promotion, and
directive sign advertisement. Overall, although IHGS and HBFS-GA could preliminar-
ily extract the copy and main elements of the image in feature extraction and generation
of advertising images, they did not perform well in background processing and overall
feature association. In addition, IHGS mistakenly labeled the copy as an image, and
the incorrect labeling of the copy and image subject further weakened the readability
and attractiveness of the advertisement. This deficiency brought significant limitations
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Fig. 9. Accuracy-recall results of data annotation. (a) Product promotion; (b) brand promotion; (c) di-

rective sign advertisement.

to the generation effect of advertising images. From this, the model raised by the re-
search exhibited significant advantages in advertising image generation tasks, especially
in background feature extraction, precise annotation of copy and image subject, and
feature integration ability, which were superior to IHGS and HBFS-GA.

Subsequently, the study employed Precision-Recall (PR) to evaluate the quality of
data annotation, as shown in Fig. 9. The subfigures a, b and c show the PR curve
results of different algorithms for product promotion, brand promotion, and directive
sign advertisement, respectively. In Fig. 9a, the P-R curve of the proposed model is
located at the top, indicating that the accuracy performed best throughout the entire
recall range, especially maintaining high accuracy at high recall rates. In contrast, the
curve of HBFS-GA shows a faster decrease in accuracy as the recall rate increased. The
curve of IHGS is located at the bottom, and its accuracy rapidly decreased as the recall
rate increased, resulting in the least ideal performance. Similarly, in Fig. 9b and c, the
curve of the proposed model remains optimal, with significantly higher accuracy than
other algorithms.

Finally, Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) were
used as evaluation metrics for image visual clarity. Among them, LPIPS is an important
indicator for measuring the perceptual quality of images, which quantifies the perceptual
differences between images through the feature space of deep networks. The smaller the
value, the closer the generated image and the target image are perceived, which is more
in line with human visual judgment. When LPIPS is 0, it indicates that the two images
are perceived to be completely identical and almost indistinguishable by the human eye.
The test results are gathered in Tab. 3 which shows the comparison of image generation
effects of three algorithms on three different types. In product promotion, the MSE
of the proposed model algorithm was the lowest, only 0.027, significantly better than
IHGS and HBFS-G. The PSNR was the highest at 65.48, while IHGS was the lowest
at only 60.45. In terms of SSIM, the proposed model reached 0.64, higher than the
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Tab. 3. Comparative experiment outcomes.

Algorithm Scene MSE PSNR SSIM LPIPS

IHGS
Product promotion 0.061 60.45 0.47 0.31
Brand promotion 0.059 60.19 0.45 0.33
Directive sign advertisement 0.057 61.42 0.46 0.32

HBFS-GA
Product promotion 0.054 63.97 0.51 0.25
Brand promotion 0.053 62.57 0.54 0.26
Directive sign advertisement 0.049 63.59 0.62 0.16

Ours
Product promotion 0.027 65.48 0.64 0.12
Brand promotion 0.014 67.68 0.68 0.11
Directive sign advertisement 0.025 66.97 0.67 0.10

0.51 of HBFS-GA and 0.47 of IHGS. In addition, the LPIPS performance of the model
proposed by the research was the best, only 0.16, far lower than the 0.31 of IHGS. In
brand promotion, the various indicators of the model proposed by the research showed
significant advantages. Among them, MSE was the lowest, only 0.014, while IHGS was
the highest, at 0.059. The PSNR was as high as 67.68, notably better than the others.
In terms of SSIM, the model proposed by the research achieved 0.68, which was the
best performance. LPIPS was the lowest at only 0.10, while IHGS was the highest at
0.33. In the directive sign advertisement, the model algorithm proposed by the research
still performed the best, with an MSE of 0.025 and a PSNR of 66.97, both better than
the other two algorithms. In terms of SSIM, the proposed model achieved 0.67, which
was also significantly better than the other two algorithms, while LPIPS demonstrated
excellent image generation quality with a minimum value of 0.10.

To evaluate the usability and deployment performance of the proposed advertising
image generation model in real environments, the model is integrated into a prototype
level advertising design assistance system to simulate the content production process
of enterprises in actual marketing scenarios. Further research on the introduction of
speeding up DDPM (SU-DDPM) [12] and multi-dimensional attention guided generative
adversarial network (MDA-GAN) [3] two modern deep generative models were compared
with feature models without SA and with SA, and the results are shown in Tab. 4, where,
in the three types of actual advertising image application scenarios, the proposed model
outperforms existing mainstream methods in terms of image quality and generation
efficiency. Taking the LPIPS index as an example, the model achieved 0.12, 0.09, and
0.11 in three scenarios, all lower than SU-DDPM and MDA-GAN, indicating that it
is closer to real images in terms of perceptual quality. In terms of SSIM, the model
proposed by the research institute achieved 0.66, 0.68, and 0.67 in the three types of tasks,
respectively, all higher than other methods, indicating a more complete preservation of
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Tab. 4. Comparison of performance and efficiency of image generation models.

Application scenarios Model LPIPS SSIM Inference Time (s)

Social media

SU-DDPM 0.14 0.61 1.42
MDA-GAN 0.17 0.59 0.88

Ours w/o SA 0.18 0.57 0.79
Ours 0.12 0.66 0.73

E-commerce Banner

SU-DDPM 0.13 0.62 1.45
MDA-GAN 0.16 0.60 0.91

Ours w/o SA 0.19 0.58 0.74
Ours 0.09 0.68 0.76

Offline promotional poster

SU-DDPM 0.14 0.61 1.51
MDA-GAN 0.17 0.58 0.92

Ours w/o SA 0.19 0.58 0.75
Ours 0.11 0.67 0.72

structural information. In terms of inference efficiency, although the inference time
of the proposed model in the E-commerce Banner scenario is higher than that of the
feature model without SA, it is generally lower than other methods in most cases. In
addition, compared with the feature model without SA, the introduction of SA resulted
in an average decrease of 0.07 in LPIPS and an average improvement of about 0.09 in
SSIM, while the inference time showed almost no significant increase. This indicates that
the SA optimization strategy maintains good computational efficiency while improving
generation quality.

4. Discussion and conclusion

Aiming at the limitations of traditional advertising image generation methods, the re-
search proposed an advertising design image generation method that combines hierar-
chical features and SA. By using a hierarchical feature model to represent advertising
images in a hierarchical manner, gradually abstracting from low-level pixel features to
high-level business features, comprehensively capturing multi-scale semantic information
of advertising design, and utilizing SA to effectively avoid local optima through proba-
bilistic random search in high-dimensional solution space, optimizing advertising design
parameters. The experiment outcomes showed that the proposed model performed well
in all indicators. On the test set, MSE, PSNR, SSIM, and LPIPS were 0.014, 67.68, 0.68,
and 0.10, respectively, all of which were superior to the other two comparison methods,
indicating that the structure of the generated image was closer to that of the target
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image, reflecting the highest visual quality. In the context of optimizing efficiency, the
raised model achieved a fitness value of 3.00 within 50 iterations on the training set, with
the lowest standard deviation and CV of 0.02 and 0.006, respectively. In addition, the
ART per iteration of the model was 55-60 seconds, which was significantly faster than
the comparison algorithm, demonstrating its superior computational efficiency.

Overall, the model based on hierarchical features and SA optimization provided a
robust and efficient framework for advertising image generation, demonstrating excel-
lent performance in visual quality, computational efficiency, and adaptability. However,
when facing industrial level application scenarios such as large-scale datasets or real-time
generation tasks, current models still face certain challenges in terms of computational
complexity and inference efficiency. Future research should further optimize algorithm
structures or introduce technologies such as distributed computing and model compres-
sion to enhance system scalability and deployment flexibility. In addition, the model
also needs to pay attention to potential ethical risks in practical applications. On the
one hand, there may be aesthetic bias in the training data, which leads to the generation
of images that excessively present certain cultural styles or gender stereotypes, affecting
the diversity and inclusiveness of advertising content; On the other hand, generating
images may visually exaggerate product effects or create misleading scenes, thereby
harming consumer rights. Future research should strengthen the introduction of fairness
mechanisms and control of content compliance while improving performance, ensuring
comprehensive optimization of advertising image generation in terms of efficiency, scale,
and ethics.
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