A CNN-RNN hybrid approach for Polish license plate recognition: Harnessing transfer learning and real-world validation

Main Article Content

Gergő B. Békési
Péter Ekler


Keywords : Polish license plate recognition, CNN-RNN, transfer learning, majority voting
Abstract

Automated license plate recognition (LPR) systems have garnered substantial attention within the field of intelligent transportation systems, owing to their pivotal role in facilitating toll collection, enhancing traffic management, and ensuring operational efficiency. Despite recent breakthroughs in convolutional and recurrent neural network architectures, Polish LPR remains underexplored, with most existing approaches relying on conventional optical character recognition. This study proposes a hybrid convolutional neural network – recurrent neural network (CNN-RNN) model equipped with a Thin-Plate Spline (TPS) transformation module, a ResNet-based feature extractor, a bidirectional Long Short-Term Memory (LSTM) sequence model, and an attention-based decoder to address the unique challenges of Polish license plates. The model is trained on a high-difficulty dataset, comprising real-world images without explicit character-level bounding boxes. Empirical evaluations underscore the efficacy of the proposed system, with competitive accuracy and normalized edit distance scores achieved on Polish, Czech, Hungarian, and Slovak datasets. Additionally, transfer learning from closely related Central European plate formats to Polish data demonstrates marked improvements in convergence and overall performance. Further validation on a challenging video-based dataset reveals the robustness of the proposed approach, evidencing its potential applicability in real-world scenarios and highlighting majority voting as an effective strategy to enhance system reliability under variable conditions.

Article Details

How to Cite
Békési, G. B., & Ekler, P. (2025). A CNN-RNN hybrid approach for Polish license plate recognition: Harnessing transfer learning and real-world validation. Machine Graphics & Vision, 34(2), 39–67. https://doi.org/10.22630/MGV.2024.34.2.3
Author Biography

Péter Ekler, Department of Automation and Applied Informatics; Faculty of Electrical Engineering and Informatics; Budapest University of Technology and Economics; Budapest; Hungary

Budapest University of Technology and Economics - Faculty of Electrical Engineering and Informatics
Department of Automation and Applied Informatics - Associate professor

References

K. Ahmad, H. Khujamatov, A. Lazarev, N. Usmanova, M. Alduailij, et al. Internet of Things‐Aided Intelligent Transport Systems in Smart Cities: Challenges, Opportunities, and Future. Wireless Communications and Mobile Computing 2023(1):7989079, 2023. https://doi.org/10.1155/2023/7989079. (Crossref)

M. Arsenović, S. Sladojević, A. Anderla, and D. Stefanović. Deep learning driven plates recognition system. In: 17th International Scientific Conference on Industrial Systems, pp. 1-4, 2017. https://www.iim.ftn.uns.ac.rs/is17/papers/29.pdf.

J. Baek, G. Kim, J. Lee, S. Park, D. Han, et al. What is wrong with scene text recognition model comparisons? dataset and model analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4714-4722, 2019. https://doi.org/10.1109/ICCV.2019.00481. (Crossref)

G. Bradski. The openCV library. Dr. Dobb's Journal: Software Tools for the Professional Programmer 25(11):120-123, 2000.

A. C. Bukola, P. A. Owolawi, C. Du, and E. Van Wyk. A systematic review and comparative analysis approach to boom gate access using plate number recognition. Computers 13(11):286, 2024. https://doi.org/10.3390/computers13110286. (Crossref)

A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, et al. Albumentations: fast and flexible image augmentations. Information 11(2):125, 2020. https://doi.org/10.3390/info11020125. (Crossref)

N. Cahyadi, S. Salsabila, S. Raniprima, and V. Monita. Review of license plate recognition techniques with deep learning. Jurnal Teknologika 14(2):458-469, 2024. https://jurnal.wastukancana.ac.id/index.php/teknologika/article/view/415. (Crossref)

L. T. A. Dang, V. D. Ngoc, P. C. L. Thien Vu, N. N. Truong, and T. D. Trinh. Vietnam vehicle number recognition based on an improved CRNN with attention mechanism. International Journal of Intelligent Transportation Systems Research pp. 1-16, 2024. https://doi.org/10.1007/s13177-024-00402-7. (Crossref)

P. Das, S. Mitra, S. Chakraborty, M. H. K. Mehedi, M. Y. M. Adib, et al. CNN-GRU based fusion architecture for bengali license plate recognition with explainable AI. In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 1-6, 2023. https://doi.org/10.1109/ICCCNT56998.2023.10413582. (Crossref)

European Commission. Road freight transport by type of goods – annual data. Eurostat, 2024. https://ec.europa.eu/eurostat/databrowser/view/road_go_ta_dc/. [Accessed: Jan 1, 2025].

J. Gąsienica-Józkowy, M. Knapik, and B. Cyganek. An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance. Integrated Computer-Aided Engineering 28(3):221-235, 2021. https://doi.org/10.3233/ICA-210649. (Crossref)

A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18(5-6):602-610, 2005. https://doi.org/10.1016/j.neunet.2005.06.042. (Crossref)

S. Hadavi, H. B. Rai, S. Verlinde, H. Huang, C. Macharis, et al. Analyzing passenger and freight vehicle movements from automatic-number plate recognition camera data. European Transport Research Review 12:1-17, 2020. https://doi.org/10.1186/s12544-020-00405-x. (Crossref)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. https://doi.org/10.1109/CVPR.2016.90. (Crossref)

K. Hefnawy, A. Lila, E. Hemayed, and M. Elshenawy. A robust license plate detection and recognition framework for arabic plates with severe tilt angles. International Journal of Advanced Computer Science & Applications 15(2), 2024. https://doi.org/10.14569/IJACSA.2024.0150287. (Crossref)

C. Y. Huang. A review of deep learning for character recognition area. In: The 26th International Scientific and Practical Conference “World Problems and Ways of Solving Modern Problems”, p. 245, 2024. https://doi.org/10.46299/ISG.2024.1.26. (Crossref)

Jaided AI. Easyocr (version 1.6.2) [computer software], 2020. https://github.com/JaidedAI/EasyOCR. [Accessed: May 27, 2025].

L. Janowski, P. Kozłowski, R. Baran, P. Romaniak, A. Glowacz, et al. Quality assessment for a visual and automatic license plate recognition. Multimedia Tools and Applications 68:23-40, 2014. https://doi.org/10.1007/s11042-012-1199-5. (Crossref)

M. Jureczko and F. Uherek. The automatic license plate recognition system based on video sequences using artificial neural networks. In: Modelling in Engineering 2020: Applied Mechanics, pp. 95-106, 2021. https://doi.org/10.1007/978-3-030-68455-6_9. (Crossref)

F. Kahraman, B. Kurt, and M. Gökmen. License plate character segmentation based on the Gabor transform and vector quantization. In: International Symposium on Computer and Information Sciences, pp. 381-388, 2003. https://doi.org/10.1007/978-3-540-39737-3_48. (Crossref)

M. Kekez. An approach to license plate recognition in real time using multi-stage computational intelligence classifier. International Journal of Electronics and Telecommunications pp. 275-280, 2023. https://doi.org/10.24425/ijet.2023.144361. (Crossref)

M. M. Khan, M. U. Ilyas, I. R. Khan, S. M. Alshomrani, and S. Rahardja. License plate recognition methods employing neural networks. IEEE Access 11:73613-73646, 2023. https://doi.org/10.1109/ACCESS.2023.3254365. (Crossref)

Z. H. Khattak, B. L. Smith, M. D. Fontaine, J. Ma, and A. J. Khattak. Active lane management and control using connected and automated vehicles in a mixed traffic environment. Transportation Research Part C: Emerging Technologies 139:103648, 2022. https://doi.org/10.1016/j.trc.2022.103648. (Crossref)

W. Kim and G. L. Chang. Development of a hybrid prediction model for freeway incident duration: A case study in maryland. International Journal of Intelligent Transportation Systems Research 10:22-33, 2012. https://doi.org/10.1007/s13177-011-0039-8. (Crossref)

K. Kluwak, J. Segen, M. Kulbacki, A. Drabik, and K. Wojciechowski. ALPR-extension to traditional plate recognition methods. In: Intelligent Information and Database Systems: 8th Asian Conference (ACIIDS 2016), pp. 755-764, 2016. https://doi.org/10.1007/978-3-662-49390-8_73. (Crossref)

E. Kot, Z. Krawczyk, K. Siwek, L. Królicki, and P. Czwarnowski. Deep learning-based framework for tumour detection and semantic segmentation. Bulletin of the Polish Academy of Sciences Technical Sciences p. e136750, 2021. https://doi.org/10.24425/bpasts.2021.136750. (Crossref)

R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, et al. A robust real-time automatic license plate recognition based on the YOLO detector. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1-10, 2018. https://doi.org/10.1109/IJCNN.2018.8489629. (Crossref)

M. Leszczuk, L. Janowski, J. Nawała, J. Zhu, Y. Wang, et al. Objective video quality assessment and ground truth coordinates for automatic license plate recognition. Electronics 12(23):4721, 2023. https://doi.org/10.3390/electronics12234721. (Crossref)

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk 163(4):845-848, 1965. http://mi.mathnet.ru/dan31411. [Accessed: Apr 12, 2025].

D. Li and J. Lasenby. Mitigating urban motorway congestion and emissions via active traffic management. Research in Transportation Business & Management 48:100789, 2023. https://doi.org/10.1016/j.rtbm.2022.100789. (Crossref)

H. Li, P. Wang, and C. Shen. Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Transactions on Intelligent Transportation Systems 20(3):1126-1136, 2018. https://doi.org/10.1109/TITS.2018.2847291. (Crossref)

T. Lindner, D. Wyrwał, M. Białek, and P. Nowak. Face recognition system based on a single-board computer. In: 2020 International Conference Mechatronic Systems and Materials (MSM), pp. 1-6, 2020. https://doi.org/10.1109/MSM49833.2020.9201668. (Crossref)

S. Z. Masood, G. Shu, A. Dehghan, and E. G. Ortiz. License plate detection and recognition using deeply learned convolutional neural networks. arXiv, arXiv:1703.07330, 2017. https://doi.org/10.48550/arXiv.1703.07330.

Minister Infrastruktury. Rozporządzenie ministra infrastruktury z dnia 8 listopada 2024 r. w sprawie rejestracji i oznaczania pojazdów, wymagań dla tablic rejestracyjnych oraz wzorów innych dokumentów związanych z rejestracją pojazdów. Dz.U. 2024 poz. 1709, 2024. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001709}. (Minster of Infrastructure. Regulation of the Minister of Infrastructure of 8 November 2024 on the registration and marking of vehicles, requirements for license plates and the use of other documents related to vehicle registration).

A. Mousa. Canny edge-detection based vehicle plate recognition. International Journal of Signal Processing, Image Processing and Pattern Recognition 5(3):1-8, 2012. https://staff.najah.edu/media/sites/default/files/Canny_Edge-Detection_Based_Vehicle_Plate_Recognition.pdf.

D. Moussa, A. Maier, F. Schirrmacher, and C. Riess. Sequence-based recognition of license plates with severe out-of-distribution degradations. In: International Conference on Computer Analysis of Images and Patterns, pp. 175-185, 2021. https://doi.org/10.1007/978-3-030-89131-2_16. (Crossref)

V. Naosekpam, A. S. Shishir, and N. Sahu. Scene text recognition with orientation rectification via IC-STN. In: TENCON 2021 – IEEE Region 10 Conference (TENCON), pp. 664-669, 2021. https://doi.org/10.1109/TENCON54134.2021.9707183. (Crossref)

OpenALPR. Automatic license plate recognition. Rekor, 2015. http://www.openalpr.com/. [Accessed: Apr 12, 2025].

V. H. Pham, P. Dinh, and V. H. Nguyen. CNN-based character recognition for license plate recognition system. In: Asian Conference on Intelligent Information and Database Systems, 2018. https://doi.org/10.1007/978-3-319-75420-8_56. (Crossref)

P. S. Puri and P. P. Bartakke. SSD based vehicle number plate detection and recognition. In: 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), pp. 1-6, 2023. https://doi.org/10.1109/NMITCON58196.2023.10276329. (Crossref)

See5. Data mining tool. Rulequest Research, 2012. http://www.rulequest.com/products.html. [Accessed: Apr 12, 2025].

R. Smith. An overview of the Tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), pp. 629-633, 2007. https://doi.org/10.1109/ICDAR.2007.4376991. (Crossref)

S. Srinivasan, D. Prabha, N. M. Raffic, K. G. Babu, S. Thirumurugaveerakumar, et al. Automated vehicle number plate recognition system using convolution long short-term memory technique. In: Object Detection with Deep Learning Models, pp. 101-115. Chapman and Hall/CRC, 2022. https://doi.org/10.1201/9781003206736-6. (Crossref)

Y. Wang, X. Yang, H. Liang, and Y. Liu. A review of the self‐adaptive traffic signal control system based on future traffic environment. Journal of Advanced Transportation 2018(1):1096123, 2018. https://doi.org/10.1155/2018/1096123. (Crossref)

A. Wilkowski, M. Stefańczyk, and W. Kasprzak. Training data extraction and object detection in surveillance scenario. Sensors 20(9):2689, 2020. https://doi.org/10.3390/s20092689. (Crossref)

P. Wróblewski. Recognition of polish car license plates. In: Computer Recognition Systems: Proceedings of the 4th International Conference on Computer Recognition Systems (CORES’05), pp. 893-900, 2005. https://doi.org/10.1007/3-540-32390-2_105. (Crossref)

F. You, Y. Zhao, and X. Wang. Combination of CNN with GRU for plate recognition. Journal of Physics: Conference Series 1187(3):032008, 2019. https://doi.org/10.1088/1742-6596/1187/3/032008. (Crossref)

M. D. Zeiler. ADADELTA: An adaptive learning rate method. arXiv, arXiv:1212.5701, 2012. https://doi.org/10.48550/arXiv.1212.5701.

H. Zhao, C. Song, H. Zhao, and S. Zhang. License plate recognition system based on morphology and LS-SVM. In: 2008 IEEE International Conference on Granular Computing, pp. 826-829, 2008. https://doi.org/10.1109/GRC.2008.4664738. (Crossref)

J. Zhao, W. Li, J. Wang, and X. Ban. Dynamic traffic signal timing optimization strategy incorporating various vehicle fuel consumption characteristics. IEEE Transactions on Vehicular Technology 65(6):3874-3887, 2015. https://doi.org/10.1109/TVT.2015.2506629. (Crossref)

L. Zou, Z. He, K. Wang, Z. Wu, Y. Wang, et al. Text recognition model based on multi-scale fusion CRNN. Sensors 23(16):7034, 2023. https://doi.org/10.3390/s23167034. (Crossref)

P. Łubkowski and D. Laskowski. Assessment of quality of identification of data in systems of automatic licence plate recognition. In: Smart Solutions in Today’s Transport: 17th International Conference on Transport Systems Telematics (TST 2017), pp. 482-493, 2017. https://doi.org/10.1007/978-3-319-66251-0_39. (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles