Main Article Content
Traditional domain adaptation learning methods have a strong dependence on data labels. The transfer process can easily lead to a decrease in training set performance, affecting the effectiveness of transfer learning. Therefore, this study proposes a domain adaptation model that combines feature disentangling and disentangling subspaces. The model separates the content and style features of images through disentangling, effectively improving the quality of image transfer. From the results, the proposed feature disentangling algorithm achieved pixel accuracy of over 84% for semantic segmentation of 14 categories, including roads, sidewalks, and buildings, with an average pixel accuracy of 85.2%. On the ImageNet, the precision, recall, F₁ score, and overall accuracy of the research algorithm were 0.942, 0.898, 0.854, and 0.841, respectively. Compared with the One-Class Support Vector Machine, the precision, recall, F₁, and overall accuracy were improved by 8.4%, 10.3%, 27.8%, and 10.9%, respectively. The proposed model can accurately recognize and classify images, providing effective technical support for image transfer.
Article Details
V. Belcamino, A. Carfì, and F. Mastrogiovanni. A systematic review on custom data gloves. IEEE Transactions on Human-Machine Systems 54(5):520-535, 2024. https://doi.org/10.1109/THMS.2024.3394674. (Crossref)
H. Cheng, Y. Wang, H. Li, A. C. Kot, and B. Wen. Disentangled feature representation for few-shot image classification. IEEE Transactions on Neural Networks and Learning Systems 35(8):10422-10435, 2024. https://doi.org/10.1109/TNNLS.2023.3241919. (Crossref)
M. Cotogni, M. Arazzi, and C. Cusano. PhotoStyle60: A photographic style dataset for photo authorship attribution and photographic style transfer. IEEE Transactions on Multimedia 26(6):10573-10584, 2024. https://doi.org/10.1109/TMM.2024.3408683. (Crossref)
Y. Feng, J. Chen, S. He, T. Pan, and Z. Zhou. Globally localized multisource domain adaptation for cross-domain fault diagnosis with category shift. IEEE Transactions on Neural Networks and Learning Systems 34(6):3082-3096, 2023. https://doi.org/10.1109/TNNLS.2021.3111732. (Crossref)
Y. Gao, S. Ma, and J. Liu. DCDR-GAN: A densely connected disentangled representation generative adversarial network for infrared and visible image fusion. IEEE Transactions on Circuits and Systems for Video Technology 33(2):549-561, 2023. https://doi.org/10.1109/TCSVT.2022.3206807. (Crossref)
T. He, C. Shen, and A. van den Hengel. Dynamic convolution for 3D point cloud instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(5):5697-5711, 2023. https://doi.org/10.1109/TPAMI.2022.3216926. (Crossref)
W. Hu, H. Song, F. Zhang, Y. Zhao, and X. Shi. Style transfer of Thangka images highlighting style attributes. IEEE Access 11(9):104817-104829, 2023. https://doi.org/10.1109/ACCESS.2023.3318258. (Crossref)
J. Huang, W. Yan, G. Li, T. Li, and S. Liu. Learning disentangled representation for multi-view 3D object recognition. IEEE Transactions on Circuits and Systems for Video Technology 32(2):646-659, 2022. https://doi.org/10.1109/TCSVT.2021.3062190. (Crossref)
G. Kang, L. Jiang, Y. Wei, Y. Yang, and A. Hauptmann. Contrastive adaptation network for single- and multi-source domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(4):1793-1804, 2022. https://doi.org/10.1109/TPAMI.2020.3029948. (Crossref)
J. Li, Y. Xiang, H. Wu, S. Yao, and D. Xu. Optimal transport-based patch matching for image style transfer. IEEE Transactions on Multimedia 25(9):5927-5940, 2023. https://doi.org/10.1109/TMM.2022.3201387. (Crossref)
M. Li, J. Wang, Y. Chen, Y. Tang, Z. Wu, et al. Low-dose CT image synthesis for domain adaptation imaging using a generative adversarial network with noise encoding transfer learning. IEEE Transactions on Medical Imaging 42(9):2616-2630, 2023. https://doi.org/10.1109/TMI.2023.3261822. (Crossref)
Y. S. Liao and C. R. Huang. Semantic context-aware image style transfer. IEEE Transactions on Image Processing 31:1911-1923, 2022. https://doi.org/10.1109/TIP.2022.3149237. (Crossref)
Z. Lin, Z. Wang, H. Chen, X. Ma, C. Xie, et al. Image style transfer algorithm based on semantic segmentation. IEEE Access 9(1):54518-54529, 2021. https://doi.org/10.1109/ACCESS.2021.3054969. (Crossref)
Y. Liu, X. Kang, Y. Huang, K. Wang, and G. Yang. Unsupervised domain adaptation semantic segmentation for remote-sensing images via covariance attention. IEEE Geoscience and Remote Sensing Letters 19(7):6513205, 2022. https://doi.org/10.1109/LGRS.2022.3189044. (Crossref)
Z. Liu, G. Chen, Z. Li, S. Qu, A. Knoll, et al. D2IFLN: Disentangled domain-invariant feature learning networks for domain generalization. IEEE Transactions on Cognitive and Developmental Systems 15(4):2269-2281, 2023. https://doi.org/10.1109/TCDS.2023.3264615. (Crossref)
Z. Ma, T. Lin, X. Li, F. Li, D. He, et al. Dual-affinity style embedding network for semantic-aligned image style transfer. IEEE Transactions on Neural Networks and Learning Systems 34(10):7404-7417, 2023. https://doi.org/10.1109/TNNLS.2022.3143356. (Crossref)
A. Mao, C. Dai, Q. Liu, J. Yang, L. Gao, et al. STD-Net: Structure-preserving and topology-adaptive deformation network for single-view 3D reconstruction. IEEE Transactions on Visualization and Computer Graphics 29(3):1785-1798, 2023. https://doi.org/10.1109/TVCG.2021.3131712. (Crossref)
W. Mao, S. Yang, H. Shi, J. Liu, and Z. Wang. Intelligent typography: Artistic text style transfer for complex texture and structure. IEEE Transactions on Multimedia 25:6485-6498, 2023. https://doi.org/10.1109/TMM.2022.3209870. (Crossref)
H. Mun, G. J. Yoon, J. Song, and S. M. Yoon. Texture preserving photo style transfer network. IEEE Transactions on Multimedia 24(8):3823-3834, 2022. https://doi.org/10.1109/TMM.2021.3108401. (Crossref)
M. Pan, Y. Tang, and H. Li. State-of-the-art in data gloves: A review of hardware, algorithms, and applications. IEEE Transactions on Instrumentation and Measurement 72(2):4002515, 2023. https://doi.org/10.1109/TIM.2023.3243614. (Crossref)
T. Shermin, G. Lu, S. W. Teng, M. Murshed, and F. Sohel. Adversarial network with multiple classifiers for open set domain adaptation. IEEE Transactions on Multimedia 23:2732-2744, 2021. https://doi.org/10.1109/TMM.2020.3016126. (Crossref)
Y. Tang, M. Pan, H. Li, and X. Cao. A convolutional-transformer-based approach for dynamic gesture recognition of data gloves. IEEE Transactions on Instrumentation and Measurement 73(5):2518813, 2024. https://doi.org/10.1109/TIM.2024.3400361. (Crossref)
Q. Wang, S. Li, Z. Wang, X. Zhang, and G. Feng. Multi-source style transfer via style disentanglement network. IEEE Transactions on Multimedia 26:1373-1383, 2024. https://doi.org/10.1109/TMM.2023.3281087. (Crossref)
Z. Wang, X. Zhou, Z. Zhou, Y. Zhang, Y. Zhang, et al. MateJam: Multi-material teeth-clutching layer jamming actuation for soft haptic glove. IEEE Transactions on Haptics 16(2):276-286, 2023. https://doi.org/10.1109/TOH.2023.3269063. (Crossref)
H. Wu, Y. Han, Q. Zhu, and Z. Geng. Novel feature-disentangled autoencoder integrating residual network for industrial soft sensor. IEEE Transactions on Industrial Informatics 19(10):10299-10308, 2023. https://doi.org/10.1109/TII.2023.3240923. (Crossref)
K. Wu, M. Wu, Z. Chen, R. Jin, W. Cui, et al. Reinforced adaptation network for partial domain adaptation. IEEE Transactions on Circuits and Systems for Video Technology 33(5):2370-2380, 2023. https://doi.org/10.1109/TCSVT.2022.3223950. (Crossref)
X. Wu, J. Chen, F. Yu, M. Yao, and J. Luo. Joint learning of multiple latent domains and deep representations for domain adaptation. IEEE Transactions on Cybernetics 51(5):2676-2687, 2021. https://doi.org/10.1109/TCYB.2019.2921559. (Crossref)
J. Zhang, X. Li, H. Li, H. Wang, J. Zhang, et al. Leader-follower control of rehabilitative soft glove based on collaborative sensing and fine motion recognition. IEEE Sensors Journal 24(19):30329-30339, 2024. https://doi.org/10.1109/JSEN.2024.3435491. (Crossref)
R. Zhang, T. Kong, W. Wang, X. Han, and M. You. 3D part assembly generation with instance encoded transformer. IEEE Robotics and Automation Letters 7(4):9051-9058, 2022. https://doi.org/10.1109/LRA.2022.3188098. (Crossref)
Z. Zhou, Y. Wu, X. Yang, and Y. Zhou. Neural style transfer with adaptive auto-correlation alignment loss. IEEE Signal Processing Letters 29:1027-1031, 2022. https://doi.org/10.1109/LSP.2022.3165758. (Crossref)