Brain tumor classification using feature extraction and ensemble learning

Main Article Content

Iliass Zine-dine
Anass Fahfouh
Jamal Riffi
Khalid El Fazazy
Ismail El Batteoui
Mohamed Adnane Mahraz
Hamid Tairi


Keywords : brain tumor, Histogram of Oriented Gradients, Discrete Wavelet Transform, ensemble learning
Abstract

Brain tumors (BT) are considered the second-principal cause of human death on our planet. They pose significant challenges in the field of medical diagnosis. Early detection is crucial for effective treatment and improved patient outcomes. As a result, researchers’ studies that deal with tumor detection play a vital role in early disease prediction in the field of medicine. Despite advancements in medical imaging technologies, accurate and efficient classification of BT remains a complex task. This study aims to address this challenge by proposing a novel method for brain tumor classification utilizing ensemble learning techniques combined with feature extraction from neuroimaging data. In the present paper, we present a novel approach for brain tumor classification that contains ensemble learning methods following the extraction of important features from brain tumor images. Our methodology involves the preprocessing of neuroimaging data, followed by feature extraction using descriptor techniques. These extracted features are then utilized as inputs to ensemble learning classifiers. Experimental results demonstrate the efficacy of the proposed approach in accurately classifying brain tumors with high precision and recall rates. The ensemble learning framework, combined with feature extraction, outperforms several benchmark models and methods commonly used in brain tumor classification, including AlexNet, VGG-16, and MobileNet, in terms of classification accuracy and computational efficiency. The proposed method that integrates ensemble learning techniques with feature extraction from neuroimaging data offers a promising solution for improving the accuracy and efficiency of brain tumor diagnosis, thereby facilitating timely intervention and treatment planning. The findings of this study contribute to the advancement of medical imaging-based classification systems for brain tumors, with implications for enhancing patient care and clinical decision-making in neuro-oncology.

Article Details

How to Cite
Zine-dine, I., Fahfouh, A., Riffi, J., El Fazazy, K., El Batteoui, I., Mahraz, M. A., & Tairi, H. (2024). Brain tumor classification using feature extraction and ensemble learning. Machine Graphics and Vision, 33(3/4), 3–28. https://doi.org/10.22630/MGV.2024.33.3.1
References

S. Abbasi and F. Tajeripour. Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing, 219:526-535, 2016. https://doi.org/10.1016/j.neucom.2016.09.051. (Crossref)

P. Afshar, A. Mohammadi, and K. N. Plataniotis. Brain tumor type classification via capsule networks. In: Proc. 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3129-3133, 2018. https://doi.org/10.1109/ICIP.2018.8451379. (Crossref)

P. Afshar, K. N. Plataniotis, and A. Mohammadi. Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In: Proc. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1368-1372, 2019. https://doi.org/10.1109/ICASSP.2019.8683759. (Crossref)

A. Ari and D. Hanbay. Deep learning based brain tumor classifcation and detection system. Turkish Journal of Electrical Engineering and Computer Sciences, 26(5):9, 2018. https://doi.org/10.3906/elk-1801-8. (Crossref)

M. Arunachalam and S. Royappan Savarimuthu. An efficient and automatic glioblastoma brain tumor detection using shift-invariant shearlet transform and neural networks. International Journal of Imaging Systems and Technology, 27(3):216-226, 2017. https://doi.org/10.1002/ima.22227. (Crossref)

A. Barragán-Montero, U. Javaid, G. Valdés, D. Nguyen, P. Desbordes, et al. Artificial intelligence and machine learning for medical imaging: A technology review. Physica Medica: European Journal of Medical Physics, 83:242-256, 2021. https://doi.org/10.1016/j.ejmp.2021.04.016. (Crossref)

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. https://doi.org/10.1023/A:1010933404324. (Crossref)

S. Charfi, R. Lahmyed, and L. Rangarajan. A novel approach for brain tumor detection using neural network. International Journal of Research in Engineering & Technology, 2:93-104, 2014. http://www.impactjournals.us/download/archives/2-77-1406198782-13. Eng-A Novel Approach for brain tumor detection using-Said Charfi.pdf.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995. https://doi.org/10.1007/BF00994018. (Crossref)

A. Çinar and M. Yildirim. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical Hypotheses, 139:109684, 2020. https://doi.org/10.1016/j.mehy.2020.109684. (Crossref)

S. Das, O. F. M. R. R. Aranya, and N. N. Labiba. Brain tumor classification using convolutional neural network. In: Proc. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1-5, 2019. https://doi.org/10.1109/ICASERT.2019.8934603. (Crossref)

S. Das, S. Bose, G. K. Nayak, and S. Saxena. Deep learning-based ensemble model for brain tumor segmentation using multi-parametric MR scans. Open Computer Science, 12(1):211-226, 2022. https://doi.org/10.1515/comp-2022-0242. (Crossref)

S. Deepak and P. M. Ameer. Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine, 111:103345, 2019. https://doi.org/10.1016/j.compbiomed.2019.103345. (Crossref)

F. J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, and D. González-Ortega. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare, 9(2):153, 2021. https://doi.org/10.3390/healthcare9020153. (Crossref)

M. Gurbină, M. Lascu, and D. Lascu. Tumor detection and classification of MRI brain image using different wavelet transforms and Support Vector Machines. In: Proc. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 505-508, 2019. https://doi.org/10.1109/TSP.2019.8769040. (Crossref)

G. Hemanth, M. Janardhan, and L. Sujihelen. Design and implementing brain tumor detection using machine learning approach. In: Proc. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1289-1294, 2019. https://doi.org/10.1109/ICOEI.2019.8862553. (Crossref)

L. Hussain, S. Saeed, I. A. Awan, A. Idris, M. S. A. Nadeem, et al. Detecting brain tumor using machines learning techniques based on different features extracting strategies. Current Medical Imaging, 15(6):595-606, 2019. https://doi.org/10.2174/1573405614666180718123533. (Crossref)

M. Jha, R. Gupta, and R. Saxena. A framework for in-vivo human brain tumor detection using image augmentation and hybrid features. Health Information Science and Systems, 10(1):23, 2022. https://doi.org/10.1007/s13755-022-00193-9. (Crossref)

J. Kang, Z. Ullah, and J. Gwak. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors, 21(6):2222, 2021. https://doi.org/10.3390/s21062222. (Crossref)

K. Kaplan, Y. Kaya, M. Kuncan, and H. M. Ertunç. Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical Hypotheses, 139:109696, 2020. https://doi.org/10.1016/j.mehy.2020.109696. (Crossref)

S. Khawaldeh, U. Pervaiz, A. Rafiq, and R. S. Alkhawaldeh. Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Applied Sciences, 8(1), 2018. https://doi.org/10.3390/app8010027. (Crossref)

T. N. R. Kumar and N. V. Shree. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Informatics, 5(1):23-30, 2018. https://doi.org/10.1007/s40708-017-0075-5. (Crossref)

G. Li, J. Sun, Y. Song, J. Qu, Z. Zhu, et al. Real-time classification of brain tumors in MRI images with a convolutional operator-based hidden Markov model. Journal of Real-Time Image Processing, 18(4):1207-1219, 2021. https://doi.org/10.1007/s11554-021-01072-4. (Crossref)

Y. Liu, M. Muftah, T. Das, K. Robson, and D. Auer. Classification of MR tumor images based on Gabor-wavelet analysis. Journal of Medical and Biological Engineering, 32(1):22-28, 2011.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94. (Crossref)

K. Maharana, S. Mondal, and B. Nemade. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1):91-99, 2022. Proc. International Conference on Intelligent Engineering Approach (ICIEA-2022). https://doi.org/10.1016/j.gltp.2022.04.020. (Crossref)

S. Mallat and W. Hwang. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2):617-643, 1992. https://doi.org/10.1109/18.119727. (Crossref)

R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, V. G. Díaz, D. Gupta, et al. Artificial intelligence with big data analytics-based brain intracranial hemorrhage e-diagnosis using CT images. Neural Computing and Applications, 35(22):16037-16049, 2023. https://doi.org/10.1007/s00521-021-06240-y. (Crossref)

H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem. Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3(1):68-71, 2017. https://doi.org/10.1016/j.fcij.2017.12.001. (Crossref)

N. Nabizadeh and M. Kubat. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Computers & Electrical Engineering, 45:286-301, 2015. https://doi.org/10.1016/j.compeleceng.2015.02.007. (Crossref)

N. Naik, M. Matonkar, P. Shatandel, M. A. O. Verekar, and V. Salkar. Detection and classification of brain tumor using naïve Bayes and J48. International Journal of Science Engineering and Information Technology Research, 9(2):19-28, 2019. (Crossref)

M. Nickparvar. Brain tumor MRI dataset. Kaggle, 2021. https://doi.org/10.34740/KAGGLE/DSV/2645886.

T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1):51-59, 1996. https://doi.org/10.1016/0031-3203(95)00067-4. (Crossref)

J. S. Paul, A. J. Plassard, B. A. Landman, and D. Fabbri. Deep learning for brain tumor classification. In: Proc. Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10137, p. 1013710. SPIE, 2017. https://doi.org/10.1117/12.2254195. (Crossref)

H. M. Rai and K. Chatterjee. Detection of brain abnormality by a novel Lu-Net deep neural CNN model from MR images. Machine Learning with Applications, 2:100004, 2020. https://doi.org/10.1016/j.mlwa.2020.100004. (Crossref)

P. Rajan and C. Sundar. Brain tumor detection and segmentation by intensity adjustment. Journal of Medical Systems, 43(8):282, 2019. https://doi.org/10.1007/s10916-019-1368-4. (Crossref)

V. Rajinikanth, A. N. Joseph Raj, K. P. Thanaraj, and G. R. Naik. A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Applied Sciences, 10(10):3429, 2020. https://doi.org/10.3390/app10103429. (Crossref)

R. H. Ramdlon, E. Martiana Kusumaningtyas, and T. Karlita. Brain tumor classification using MRI images with K-Nearest Neighbor method. In: Proc. 2019 International Electronics Symposium (IES), pp. 660-667, 2019. https://doi.org/10.1109/ELECSYM.2019.8901560. (Crossref)

R. Ranjbarzadeh, A. Caputo, E. B. Tirkolaee, S. Jafarzadeh Ghoushchi, and M. Bendechache. Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Computers in Biology and Medicine, 152:106405, 2023. https://doi.org/10.1016/j.compbiomed.2022.106405. (Crossref)

A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran. A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing, 39(2):757-775, 2020. https://doi.org/10.1007/s00034-019-01246-3. (Crossref)

J. Seetha and S. S. Raja. Brain tumor classification using convolutional neural networks. Biomedical & Pharmacology Journal, 11(3):1457-1461, 2018. https://doi.org/10.13005/bpj/1511. (Crossref)

A. Shafi, M. B. Rahman, T. Anwar, R. S. Halder, and H. E. Kays. Classification of brain tumors and auto-immune disease using ensemble learning. Informatics in Medicine Unlocked, 24:100608, 2021. https://doi.org/10.1016/j.imu.2021.100608. (Crossref)

D. Singh and K. Kaur. Classification of abnormalities in brain MRI images using GLCM, PCA and SVM. International Journal of Engineering and Advanced Technology, 1(6):243-248, 2012. https://www.ijeat.org/portfolio-item/F0676081612/.

Z. Sobhaninia, N. Karimi, P. Khadivi, R. Roshandel, and S. Samavi. Brain tumor classification using medial residual encoder layers. arXiv, 2019. ArXiv.2011.00628. https://doi.org/10.48550/arXiv.2011.00628.

Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics, 75:34-46, 2019. https://doi.org/10.1016/j.compmedimag.2019.05.001. (Crossref)

F. Tajeripour, E. Kabir, and A. Sheikhi. Fabric defect detection using modified local binary patterns. EURASIP Journal on Advances in Signal Processing, 2008(1):783898, 2008. https://doi.org/10.1155/2008/783898. (Crossref)

D. P. Tian. A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering, 8(4):385-395, 2013.

S. Wang, M. Chen, Y. Li, Y. Zhang, L. Han, et al. Detection of dendritic spines using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks. Computational and Mathematical Methods in Medicine, 2015(1):454076, 2015. https://doi.org/10.1155/2015/454076. (Crossref)

J. Yan, S. Lin, S. B. Kang, and X. Tang. Learning the change for automatic image cropping. In: Proc. 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 971-978, 2013. https://doi.org/10.1109/CVPR.2013.130. (Crossref)

I. Zine-dine, J. Riffi, K. El Fazazi, M. A. Mahraz, and H. Tairi. Brain tumor classification using machine and transfer learning. In: Proc. 2nd International Conference on Big Data, Modelling and Machine Learning (BML), pp. 566-571. INSTICC, 2022. https://doi.org/10.5220/0010762800003101. (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles