Main Article Content
Skin lesion segmentation identifies and outlines the boundaries of abnormal skin regions. Accurate segmentation may help in the early detection of skin cancer. Accurate Skin Lesion Segmentation is still challenging due to different skin color tones, variations in shape, and body hairs. Moreover, variability in the lesion appearance, quality of the images, and lack of clear skin boundaries make the problem even harder. This paper proposes a SegNet model with spatial attention mechanisms for skin lesion segmentation. Adding one component of spatial attention to SegNet allows the proposed model to focus more on specific parts across the image, eventually leading to a better segmentation of the lesion boundary. The proposed model was evaluated on the ISIC 2018 dataset. Our proposed model attained an average accuracy of 96.25%, and the average dice coefficient equals 0.9052. The model's performance indicates its possible application in automated skin disease diagnosis.
Article Details
N. Ahmed, X. Tan, and L. Ma. A new method proposed to melanoma-skin cancer lesion detection and segmentation based on hybrid convolutional neural network. Multimedia Tools and Applications 82(8):11873-11896, 2023. https://doi.org/10.1007/s11042-022-13618-0. (Crossref)
Z. Apalla, A. Lallas, E. Sotiriou, E. Lazaridou, and D. Ioannides. Epidemiological trends in skin cancer. Dermatology Practical & Conceptual 7(2):1, 2017. https://doi.org/10.5826/dpc.0702a01. (Crossref)
R. L. Araújo, F. H. D. de Araújo, and R. R. V. e. Silva. Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning. Multimedia Systems 28(4):1239-1250, 2022. https://doi.org/10.1007/s00530-021-00840-3. (Crossref)
M. Attia, M. Hossny, H. Zhou, S. Nahavandi, H. Asadi, et al. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. Computer methods and programs in biomedicine 177:17-30, 2019. https://doi.org/10.1016/j.cmpb.2019.05.010. (Crossref)
R. Azad, M. Heidari, Y. Wu, and D. Merhof. Contextual Attention Network: Transformer meets U-Net. In: International Workshop on Machine Learning in Medical Imaging (MLMI 2022), vol. 13583 of Lecture Notes in Computer Science, pp. 377-386. Springer, 2022. https://doi.org/10.1007/978-3-031-21014-3_39. (Crossref)
Canadian Skin Cance Foundation. Skin cancer early detection. In: Skin Cancer, 2024. https://www.canadianskincancerfoundation.com/early-detection/. [Accessed: 2024-11-05].
N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv, arXiv:1902.03368, 2019. https://doi.org/10.48550/arXiv.1902.03368.
J. Dinnes, J. J. Deeks, M. J. Grainge, N. Chuchu, L. Ferrante di Ruffano, et al. Visual inspection for diagnosing cutaneous melanoma in adults. Cochrane Database of Systematic Reviews 2018(12), 1996. https://doi.org/10.1002/14651858.CD013194. (Crossref)
H. C. Engasser and E. M. Warshaw. Dermatoscopy use by US dermatologists: A cross-sectional survey. Journal of the American Academy of Dermatology 63(3):412-419, 2010. https://doi.org/10.1016/j.jaad.2009.09.050. (Crossref)
S. Feng, H. Zhao, F. Shi, X. Cheng, M. Wang, et al. CPFNet: Context pyramid fusion network for medical image segmentation. IEEE Transactions on Medical Imaging 39(10):3008-3018, 2020. https://doi.org/10.1109/TMI.2020.2983721. (Crossref)
Z. Ge, S. Demyanov, R. Chakravorty, A. Bowling, and R. Garnavi. Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. In: Proc. 20th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2017), vol. 10435 part III of Lecture Notes in Computer Science, pp. 250-258. Springer, 2017. https://doi.org/10.1007/978-3-319-66179-7_29. (Crossref)
K. Hauser, A. Kurz, S. Haggenmüller, R. C. Maron, C. von Kalle, et al. Explainable artificial intelligence in skin cancer recognition: A systematic review. European Journal of Cancer 167:54-69, 2022. https://doi.org/10.1016/j.ejca.2022.02.025. (Crossref)
W. Hu, L. Fang, R. Ni, H. Zhang, and G. Pan. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC cancer 22(1):836, 2022. https://doi.org/10.1186/s12885-022-09940-3. (Crossref)
IARC. Skin cancer. In: International Agency for Research on Cancer (IARC), WHO, 2024. https://www.iarc.who.int/cancer-type/skin-cancer/. [Accessed: 05-11-2024].
Q. Jin, H. Cui, C. Sun, Z. Meng, and R. Su. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Applied Soft Computing 99:106881, 2021. https://doi.org/10.1016/j.asoc.2020.106881. (Crossref)
M. A. Khan, M. Sharif, T. Akram, R. Damaševičius, and R. Maskeliūnas. Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics 11(5):811, 2021. https://doi.org/10.3390/diagnostics11050811. (Crossref)
N. Lama, R. Kasmi, J. R. Hagerty, R. J. Stanley, R. Young, et al. ChimeraNet: U-Net for hair detection in dermoscopic skin lesion images. Journal of Digital Imaging 36(2):526-535, 2023. https://doi.org/10.1007/s10278-022-00740-6. (Crossref)
B. Lei, Z. Xia, F. Jiang, X. Jiang, Z. Ge, et al. Skin lesion segmentation via generative adversarial networks with dual discriminators. Medical Image Analysis 64:101716, 2020. https://doi.org/10.1016/j.media.2020.101716. (Crossref)
W. Li, A. N. J. Raj, T. Tjahjadi, and Z. Zhuang. Digital hair removal by deep learning for skin lesion segmentation. Pattern Recognition 117:107994, 2021. https://doi.org/10.1016/j.patcog.2021.107994. (Crossref)
L. Liu, X. Zhang, Y. Li, and Z. Xu. An improved multi-scale feature fusion for skin lesion segmentation. Applied Sciences 13(14), 2023. https://doi.org/10.3390/app13148512. (Crossref)
P. A. Lyakhov, U. A. Lyakhova, and D. I. Kalita. Multimodal analysis of unbalanced dermatological data for skin cancer recognition. IEEE Access 11:131487-131507, 2023. https://doi.org/10.1109/ACCESS.2023.3336289. (Crossref)
R. Maurya, N. N. Pandey, M. K. Dutta, and M. Karnati. FCCS-Net: Breast cancer classification using Multi-Level fully Convolutional-Channel and spatial attention-based transfer learning approach. Biomedical Signal Processing and Control 94:106258, 2024. https://doi.org/10.1016/j.bspc.2024.106258. (Crossref)
A. Naveed, S. S. Naqvi, S. Iqbal, I. Razzak, H. A. Khan, et al. RA-Net: Region-Aware attention Network for skin lesion segmentation. Cognitive Computation 16:2279–2296, 2024. https://doi.org/10.1007/s12559-024-10304-1. (Crossref)
S. Rajpar and J. Marsden. ABC of Skin Cancer. John Wiley & Sons, 2009.
G. Ramella. Hair removal combining saliency, shape and color. Applied Sciences 11(1):447, 2021. https://doi.org/10.3390/app11010447. (Crossref)
M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8. IEEE, 2007. https://doi.org/10.1109/CVPR.2007.383157. (Crossref)
M. Rehman, M. Ali, M. Obayya, J. Asghar, L. Hussain, et al. Machine learning based skin lesion segmentation method with novel borders and hair removal techniques. Plos one 17(11):e0275781, 2022. https://doi.org/10.1371/journal.pone.0275781. (Crossref)
M. A. Richard, C. Paul, T. Nijsten, P. Gisondi, C. Salavastru, et al. Prevalence of most common skin diseases in Europe: a population-based study. Journal of the European Academy of Dermatology and Venereology 36(7):1088-1096, 2022. https://doi.org/10.1111/jdv.18050. (Crossref)
M. Sharafudeen and S. S. V. Chandra. Detecting skin lesions fusing handcrafted features in image network ensembles. Multimedia Tools and Applications 82:3155–3175, 2022. https://doi.org/0.1007/s11042-022-13046-0. (Crossref)
S. Tehsin, I. M. Nasir, R. Damaševičius, and R. Maskeliūnas. DaSAM: Disease and spatial attention module-based explainable model for brain tumor detection. Big Data and Cognitive Computing 8(9), 2024. https://doi.org/10.3390/bdcc8090097. (Crossref)
The American Cancer Society medical and editorial content team. Key Statistics for Melanoma Skin Cancer. In: Melanoma Skin Cancer, 2025. https://www.cancer.net/cancer-types/melanoma/statistics. [Accessed: 2024-11-05].
The International Skin Imaging Collaboration. ISIC CHALLENGE, 2018-2024. https://challenge.isic-archive.com/data/.
J. M. J. Valanarasu and V. M. Patel. UNeXt: MLP-based rapid medical image segmentation network. In: Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), vol. 13435 of Lecture Notes in Computer Science, pp. 23-33. Springer Nature Switzerland, 2022. https://doi.org/10.1007/978-3-031-16443-9_3. (Crossref)
H. Wu, S. Chen, G. Chen, W. Wang, B. Lei, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Medical Image Analysis 76:102327, 2022. https://doi.org/https://doi.org/10.1016/j.media.2021.102327. (Crossref)
Z. Yu, L. Yu, W. Zheng, and S. Wang. EIU-Net: Enhanced feature extraction and improved skip connections in U-Net for skin lesion segmentation. Computers in Biology and Medicine 162:107081, 2023. https://doi.org/10.1016/j.compbiomed.2023.107081. (Crossref)
Y. Zhong, Z. Shi, Y. Zhang, Y. Zhang, and H. Li. CSAN-UNet: Channel spatial attention nested UNet for infrared small target detection. Remote Sensing 16(11):1894, 2024. https://doi.org/10.3390/rs16111894. (Crossref)