A review: Machine learning techniques of brain tumor classification and segmentation

Main Article Content

Iliass Zine-dine
Jamal Riffi
Khalid El Fazazy
Ismail El Batteoui
Mohamed Adnane Mahraz
Hamid Tairi


Keywords : brain tumor, feature extraction, machine learning, deep learning
Abstract

Classifying brain tumors in magnetic resonance images (MRI) is a critical endeavor in medical image processing, given the challenging nature of automated tumor recognition. The variability and complexity in the location, size, shape, and texture of these lesions, coupled with the intensity similarities between brain lesions and normal tissues, pose significant hurdles. This study focuses on the importance of brain tumor detection and its challenges within the context of medical image processing. Presently, researchers have devised various interventions aimed at developing models for brain tumor classification to mitigate human involvement. However, there are limitations on time and cost for this task, as well as some other challenges that can identify tumor tissues. This study reviews many publications that classify brain tumors. Mostly employed supervised machine learning algorithms like support vector machine (SVM), random forest (RF), Gaussian Naive Bayes (GNB), k-Nearest Neighbors (K-NN), and k-means and some researchers employed convolutional neural network methods, transfer learning, deep learning, and ensemble learning. Every classification algorithm aims to provide an accurate and effective system, allowing for the fastest and most precise tumor detection possible. Usually, a pre-processing approach is employed to assess the system's accuracy; other techniques, such as the Gabor discrete wavelet transform (DWT), Local Binary Pattern (LBP), Gray Level Co-occurrence Matrix (GLCM), Principal Component Analysis (PCA), Scale-Invariant Feature Transform (SIFT) and the descriptor histogram of oriented gradients (HOG). In this study, we examine prior research on feature extraction techniques, discussing various classification methods and highlighting their respective advantages, providing statistical analysis on their performance.

Article Details

How to Cite
Zine-dine, I., Riffi, J., El Fazazy, K., El Batteoui, I., Mahraz, M. A., & Tairi, H. (2025). A review: Machine learning techniques of brain tumor classification and segmentation. Machine Graphics & Vision, 34(3), 31–55. https://doi.org/10.22630/MGV.2025.34.3.2
References

S. Abbasi and F. Tajeripour. Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219:526-535, 2017. https://doi.org/10.1016/j.neucom.2016.09.051. (Crossref)

I. Aboussaleh, J. Riffi, K. el Fazazy, A. M. Mahraz, and H. Tairi. 3DUV-NetR+: A 3D hybrid semantic architecture using transformers for brain tumor segmentation with multimodal MR images. Results in Engineering 21:101892, 2024. https://doi.org/10.1016/j.rineng.2024.101892. (Crossref)

I. Aboussaleh, J. Riffi, K. E. Fazazy, A. M. Mahraz, and H. Tairi. STCPU-Net: advanced U-shaped deep learning architecture based on Swin transformers and capsule neural network for brain tumor segmentation. Neural Computing and Applications 36(30):18549-18565, 2024. https://doi.org/10.1007/s00521-024-10144-y. (Crossref)

K. Adu, Y. Yu, J. Cai, I. Asare, and J. Quahin. The influence of the activation function in a capsule network for brain tumor type classification. International Journal of Imaging Systems and Technology 32(1):123-143, 2022. https://doi.org/10.1002/ima.22638. (Crossref)

K. Adu, Y. Yu, J. Cai, and N. Tashi. Dilated capsule network for brain tumor type classification via MRI segmented tumor region. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 942-947. IEEE, 2019. https://doi.org/10.1109/ROBIO49542.2019.8961610. (Crossref)

P. Afshar, A. Mohammadi, and K. N. Plataniotis. BayesCap: A Bayesian approach to brain tumor classification using capsule networks. IEEE Signal Processing Letters 27:2024-2028, 2020. https://doi.org/10.1109/LSP.2020.3034858. (Crossref)

P. Afshar, K. N. Plataniotis, and A. Mohammadi. Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1368-1372. IEEE, 2019. https://doi.org/10.1109/ICASSP.2019.8683759. (Crossref)

P. Afshar, K. N. Plataniotis, and A. Mohammadi. BoostCaps: a boosted capsule network for brain tumor classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1075-1079. IEEE, 2020. https://doi.org/10.1109/EMBC44109.2020.9175922. (Crossref)

M. Aloraini, A. Khan, S. Aladhadh, S. Habib, M. F. Alsharekh, et al. Combining the transformer and convolution for effective brain tumor classification using MRI images. Applied Sciences 13(6):3680, 2023. https://doi.org/10.3390/app13063680. (Crossref)

A. M. Alqudah, H. Alquraan, I. A. Qasmieh, A. Alqudah, and W. Al-Sharu. Brain tumor classification using deep learning technique - A comparison between cropped, uncropped, and segmented lesion images with different sizes. arXiv, arXiv:2001.08844, 2020. https://doi.org/10.48550/arXiv.2001.08844. (Crossref)

J. Amin, M. Sharif, M. Raza, T. Saba, and M. A. Anjum. Brain tumor detection using statistical and machine learning method. Computer Methods and Programs in Biomedicine 177:69-79, 2019. https://doi.org/10.1016/j.cmpb.2019.05.015. (Crossref)

J. Amin, M. Sharif, M. Raza, and M. Yasmin. Detection of brain tumor based on features fusion and machine learning. Journal of Ambient Intelligence and Humanized Computing 15:983–999, 2024. https://doi.org/10.1007/s12652-018-1092-9. (Crossref)

J. Amin, M. Sharif, M. Yasmin, and S. L. Fernandes. Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Generation Computer Systems 87:290-297, 2018. https://doi.org/10.1016/j.future.2018.04.065. (Crossref)

A. Ari and D. Hanbay. Deep learning based brain tumor classification and detection system. Turkish Journal of Electrical Engineering and Computer Sciences 26(5):2275-2286, 2018. https://doi.org/10.3906/elk-1801-8. (Crossref)

M. J. Aziz, A. A. T. Zade, P. Farnia, M. Alimohamadi, B. Makkiabadi, et al. Accurate automatic glioma segmentation in brain MRI images based on CapsNet. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3882-3885. IEEE, 2021. https://doi.org/10.1109/EMBC46164.2021.9630324. (Crossref)

M. M. Badža and M. Č. Barjaktarović. Classification of brain tumors from MRI images using a convolutional neural network. Applied Sciences 10(6):1999, 2020. https://doi.org/10.3390/app10061999. (Crossref)

T. Balamurugan and E. Gnanamanoharan. Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Computing and Applications 35:4739-4753, 2023. https://doi.org/10.1007/s00521-022-07934-7. (Crossref)

J. Chen and M. J. Berry. Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry 86(1):1-12, 2003. https://doi.org/10.1046/j.1471-4159.2003.01854.x. (Crossref)

S. Deepak and P. M. Ameer. Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine 111:103345, 2019. https://doi.org/10.1016/j.compbiomed.2019.103345. (Crossref)

S. Deepak and P. M. Ameer. Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion. Neurocomputing 520:94-102, 2023. https://doi.org/10.1016/j.neucom.2022.11.039. (Crossref)

D. N. George, H. B. Jehlol, and A. S. A. Oleiwi. Brain tumor detection using shape features and machine learning algorithms. International Journal of Scientific and Engineering Research 6(12):454-459, 2015.

X. Han and Y. Li. The application of convolution neural networks in handwritten numeral recognition. International Journal of Database Theory and Application 8(3):367-376, 2015. https://doi.org/10.14257/ijdta.2015.8.3.32. (Crossref)

A. M. Hasan, H. A. Jalab, R. W. Ibrahim, F. Meziane, A. R. AL-Shamasneh, et al. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy 22(9):1033, 2020. https://doi.org/10.3390/e22091033. (Crossref)

A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H. R. Roth, et al. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 7th International Workshop, BrainLes 2021. Held in Conjunction with MICCAI 2021, vol. 12962 of Lecture Notes in Computer Science, pp. 272-284. Springer, 2021. https://doi.org/10.1007/978-3-031-08999-2_22. (Crossref)

A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, et al. UNETR: Transformers for 3D medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1748-1758, 2022. https://doi.org/10.1109/WACV51458.2022.00181. (Crossref)

Q. Jia and H. Shu. BiTr-Unet: A CNN-transformer combined network for MRI brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 7th International Workshop, BrainLes 2021. Held in Conjunction with MICCAI 2021, vol. 12963 of Lecture Notes in Computer Science, pp. 3-14. Springer, 2021. https://doi.org/10.1007/978-3-031-09002-8_1. (Crossref)

J. Kang, Z. Ullah, and J. Gwak. MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 21(6):2222, 2021. https://doi.org/10.3390/s21062222. (Crossref)

K. Kaplan, Y. Kaya, M. Kuncan, and H. M. Ertunç. Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical Hypotheses 139:109696, 2020. https://doi.org/10.1016/j.mehy.2020.109696. (Crossref)

H. Kutlu and E. Avcı. A novel method for classifying liver and brain tumors using convolutional neural networks, discrete wavelet transform and long short-term memory networks. Sensors 19(9):1992, 2019. https://doi.org/10.3390/s19091992. (Crossref)

K. Maharana, S. Mondal, and B. Nemade. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings 3(1):91-99, 2022. (Crossref)

H. C. Megha. Evaluation of brain tumor mri imaging test detection and classification. International Journal for Research in Applied Science and Engineering Technology 8(6):124-131, 2020. https://doi.org/10.22214/ijraset.2020.6019. (Crossref)

H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem. Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal 3(1):68-71, 2018. https://doi.org/10.1016/j.fcij.2017.12.001. (Crossref)

N. Nabizadeh and M. Kubat. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Computers & Electrical Engineering 45:286-301, 2015. https://doi.org/10.1016/j.compeleceng.2015.02.007. (Crossref)

S. Najafi, M. C. Amirani, and Z. Sedghi. A new approach to mri brain images classification. In: 2011 19th Iranian Conference on Electrical Engineering, pp. 1-5. IEEE, 2011.

K. Pathak, M. Pavthawala, N. Patel, D. Malek, V. Shah, et al. Classification of brain tumor using convolutional neural network. In: 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 128-132. IEEE, 2019. https://doi.org/10.1109/ICECA.2019.8821931. (Crossref)

H. Peiris, M. Hayat, Z. Chen, G. Egan, and M. Harandi. A robust volumetric transformer for accurate 3D tumor segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), vol. 13435 of Lecture Notes in Computer Science, pp. 162-172. Springer, 2022. https://doi.org/10.1007/978-3-031-16443-9_16. (Crossref)

H. M. Rai and K. Chatterjee. Detection of brain abnormality by a novel Lu-Net deep neural CNN model from MR images. Machine Learning with Applications 2:100004, 2020. https://doi.org/10.1016/j.mlwa.2020.100004. (Crossref)

P. G. Rajan and C. Sundar. Brain tumor detection and segmentation by intensity adjustment. Journal of Medical Systems 43(8):282, 2019. https://doi.org/10.1007/s10916-019-1368-4. (Crossref)

A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran. A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing 39(2):757-775, 2020. https://doi.org/10.1007/s00034-019-01246-3. (Crossref)

J. Seetha and S. S. Raja. Brain tumor classification using convolutional neural networks. Biomedical & Pharmacology Journal 11(3):1457-1461, 2018. https://doi.org/10.13005/bpj/1511. (Crossref)

J. L. Semmlow. Biosignal and medical image processing. CRC press, Boca Raton, 2008. https://doi.org/10.1201/9780203024058. (Crossref)

K. Sharma, A. Kaur, and S. Gujral. Brain tumor detection based on machine learning algorithms. International Journal of Computer Applications 103(1):7-11, 2014. https://doi.org/10.5120/18036-6883. (Crossref)

S. Shrot, M. Salhov, N. Dvorski, E. Konen, A. Averbuch, et al. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. Neuroradiology 61:757-765, 2019. https://doi.org/10.1007/s00234-019-02195-z. (Crossref)

Z. Sobhaninia, N. Karimi, P. Khadivi, R. Roshandel, and S. Samavi. Brain tumor classification using medial residual encoder layers. arXiv, arXiv:2011.00628, 2020. https://doi.org/10.48550/arXiv.2011.00628.

D. Stamate, R. Smith, R. Tsygancov, R. Vorobev, J. Langham, et al. Applying deep learning to predicting dementia and mild cognitive impairment. In: Artificial Intelligence Applications and Innovations: Proceedings of the 16th IFIP WG 12.5 International Conference (AIAI 2020), Part II, vol. 584 of IFIP Advances in Information and Communication Technology, pp. 308-319. Springer, 2020. https://doi.org/10.1007/978-3-030-49186-4_26. (Crossref)

H. H. Sultan, N. M. Salem, and W. Al-Atabany. Multi-classification of brain tumor images using deep neural network. IEEE Access 7:69215-69225, 2019. https://doi.org/10.1109/ACCESS.2019.2919122. (Crossref)

Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, et al. Brain tumor classification for mr images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics 75:34-46, 2019. https://doi.org/10.1016/j.compmedimag.2019.05.001. (Crossref)

S. Tummala, S. Kadry, S. A. C. Bukhari, and H. T. Rauf. Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling. Current Oncology 29(10):7498-7511, 2022. https://doi.org/10.3390/curroncol29100590. (Crossref)

R. Vimal Kurup, V. Sowmya, and K. P. Soman. Effect of data pre-processing on brain tumor classification using Capsulenet. In: Proceedings of ICICCT 2019 - System Reliability, Quality Control, Safety, Maintenance and Management, pp. 110-119. Springer, 2020. https://doi.org/10.1007/978-981-13-8461-5_13. (Crossref)

W. Wang, C. Chen, M. Ding, H. Yu, S. Zha, et al. TransBTS: Multimodal brain tumor segmentation using transformer. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), vol. 12901 of Lecture Notes in Computer Science, pp. 109-119. Springer, 2021. https://doi.org/10.1007/978-3-030-87193-2_11. (Crossref)

I. Zine-dine, A. Fahfouh, J. Riffi, K. El Fazazy, I. El Batteoui, et al. Brain tumor classification using feature extraction and ensemble learning. Machine Graphics and Vision 33(3/4):3-28, 2024. https://doi.org/10.22630/MGV.2024.33.3.1. (Crossref)

I. Zine-dine, J. Riffi, K. El Fazazy, I. El Batteoui, M. A. Mahraz, et al. A hybrid model for Alzheimer’s disease classification based on neural network architectures enhanced by GAN model. International Journal of Online and Biomedical Engineering 21(8):23, 2025. https://doi.org/10.3991/ijoe.v21i08.54363. (Crossref)

I. Zine-dine, J. Riffi, K. El Fazazy, M. A. Mahraz, and H. Tairi. Brain tumor classification using machine and transfer learning. In: Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning (BML), vol. 1, pp. 566-571, 2021. https://doi.org/10.5220/0010762800003101. (Crossref)

I. Zine-dine, J. Riffi, K. El Fazziki, M. Mohamed Adnane, and T. Hamid. Alzheimer’s disease classification using histogram of oriented gradient, transfer learning, and capsules network. International Journal of Intelligent Systems and Applications in Engineering 12(4):5335–5350, Jun 2025. https://ijisae.org/index.php/IJISAE/article/view/7325.

E. de la Rosa, J. Kirschke, B. Wiestler, B. Menze, M. Reyes, et al. ISLES Challenge 2022. Ischemic Stroke Lesion Segmentation, 2022. https://www.isles-challenge.org/.

S. Bakas, U. Baid, C. Carr, E. Calabrese, E. Colak, et al. RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021, 2021. http://braintumorsegmentation.org/.

Figshare LLP. figshare. A Digital Science Solution. https://figshare.com.

Alphabet. Google Scholar. https://scholar.google.co.in.

Elsevier. ScienceDirect. https://www.sciencedirect.com.

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)