Main Article Content
Article Details
D. K. Iakovidis, C. Smailis, T. Goudas, and I. Maglogiannis. Ratsnake: A Versatile Image Annotation Tool with Application to Computer-Aided Diagnosis. The Scientific World Journal, vol. 2014, Article ID 286856, 12 pages, 2014. https://doi.org/10.1155/2014/286856. (Crossref)
N. Fiedler, M. Bestmann, N. Hendrich. ImageTagger: An Open Source Online Platform for Collaborative Image Labeling. In Holz et al., editors,RoboCup 2018: Robot World Cup XXII. vol 11374 Lecture Notes in Computer Science, Springer 2019 https://doi.org/10.1007/978-3-030-27544-0_13, https://github.com/bit-bots/imagetagger (Crossref)
Erdmann, M., Maedche, A., Schnurr, H. P., and Staab, S. From manual to semi-automatic semantic annotation: About ontology-based text annotation tools. In Proceedings of the COLING-2000 Workshop on Semantic Annotation and Intelligent Content (pp. 79-85). 2000, August.
Sazedj, P., and Pinto, H. S. Time to evaluate: Targeting Annotation Tools. In SemAnnot@ ISWC. 2005, November.
Dasiopoulou, S., Giannakidou, E., Litos, G., Malasioti, P., and Kompatsiaris, Y. A survey of semantic image and video annotation tools. In Knowledge-driven multimedia information extraction and ontology evolution (pp. 196-239). Springer, Berlin, Heidelberg. 2011. (Crossref)
S. Seifert, M. Kelm, M. Moeller, S. Mukherjee, A. Cavallaro, M. Huber and D. Comaniciu. Semantic annotation of medical images. In Medical Imaging 2010: Advanced PACS-based Imaging Informatics and Therapeutic Applications (Vol. 7628, p. 762808). International Society for Optics and Photonics. 2010, March. (Crossref)
K. Chehab, A. Kalboussi, and A. H. Kacem. Study of Annotations in e-health Domain. In International Conference on Smart Homes and Health Telematics (pp. 189-199). Springer, Cham. 2018, July. (Crossref)
M. Neves, U. Leser. A survey on annotation tools for the biomedical literature. Briefings in Bioinformatics, 15(2):327—340, March 2014. https://doi.org/10.1093/bib/bbs084 (Crossref)
T. Wirthgen, G. Lempe, S. Zipser and U. Grunhaupt. Level-set based infrared image segmentation for automatic veterinary health monitoring. In L. Bolc et al., editors, Computer Vision and Graphics: Proc. Int. Conf. ICCVG 2012, volume 7594 of Lecture Notes in Computer Science, pages 685–693, Warsaw, Poland, 24-26 Sep 2012. Springer. (Crossref)
L. Yang, D. Zhang, J. Luo, Z. Wang and C. Wu. Automatic Recognition for Cotton Spider Mites Damage Level Based on SVM and AdaBoost. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery 50(2):14-20 2019.
A. Farooq, X. Jia, J. Hu and J. Zhou. Multi-resolution weed classification via convolutional neural network and superpixel based local binary pattern using remote sensing images. Remote Sensing 11, 2019. https://doi.org/https://doi.org/10.3390/rs11141692 (Crossref)
R. Aravind, M. Daman, and B. S. Kariyappa. Design and development of automatic weed detection and smart herbicide sprayer robot. In 2015 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2015 257–261, 2015. (Crossref)
Labelbox. [Online; accessed 10 Dec 2019]. https://www.labelbox.io/.
Labelimg. [Online; accessed 10 Dec 2019]. https://github.com/tzutalin/labelImg.
M. Bauml. Sloth documentation. [Online; accessed 10 Dec 2019]. http://sloth.readthedocs.io/en/latesthttps://github.com/cvhciKIT/sloth.
C. Zhang, K. Loken, Z. Chen, Z. Xiao and G. Kunkel. Mask editor: an image annotation tool for image segmentation tasks (2018). arXiv preprint https://arxiv.org/abs/1809.06461. https://github.com/Chuanhai/Mask-Editor.
Computer Vision Annotation Tool (CVAT). [Online; accessed 10 Dec 2019]. https://github.com/opencv/cvat.
B. C. Russell, A. Torralba, K. P. Murphy and W. T. Freeman. Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vis., 77(1–3):157—173 2008. https://doi.org/10.1007/s11263-007-0090-8. https://github.com/wkentaro/labelme. (Crossref)
imglab. [Online; accessed 10 Dec 2019]. https://github.com/NaturalIntelligence/imglab
A. Dutta ad A.Zisserman. The VIA Annotation Software for Images, Audio and Video In Proceedings of the 27th ACM International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3343031.3350535 (Crossref)
Rhoban. [Online; accessed 10 Dec 2019]. http://rhoban.com/tagger, https://github.com/Rhoban/tagger.
Downloads
- R Roopalakshmi, Chemical ripening and contaminations detection using neural networks-based image features and spectrometric signatures , Machine Graphics and Vision: Vol. 30 No. 1/4 (2021)
You may also start an advanced similarity search for this article.
- Krzysztof Gajowniczek, Marcin Bator, Katarzyna Śmietańska, Jarosław Górski, Assessment of the possibility of imitating experts' aesthetic judgments about the impact of knots on the attractiveness of furniture fronts made of pine wood , Machine Graphics and Vision: Vol. 32 No. 2 (2023)
- Joanna Kaczmarczyk, Maciej Pankiewicz, Color transformation method that preserves the impression of texture in virtual makeover system , Machine Graphics and Vision: Vol. 22 No. 1/4 (2013)
- Marcin Bator, Katarzyna Śmietańska, Constraint-based algorithm to estimate the line of a milling edge , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)