Main Article Content
Article Details
N. Chakrabarty. Brain MRI images for brain tumor detection, 2019. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection. Dataset [accessed Feb 2021].
N. Codella, V. Rotemberg, P. Tschandl, et al. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge. Hosted by the International Skin Imaging Collaboration (ISIC). arXiv preprint, 2019. arXiv: https://arxiv.org/abs/1902.03368.
B. J. Erickson. Magician’s Corner: 2. Optimizing a simple image classifier. Radiology: Artificial Intelligence, 1(5):e190113, 2019. https://doi.org/10.1148/ryai.2019190113. (Crossref)
B. J. Erickson. Magician's Corner: How to start learning about deep learning. Radiology: Artificial Intelligence, 1(4):e190072, 2019. https://doi.org/10.1148/ryai.2019190072. (Crossref)
A. Goldbloom, B. Hamner, J. Moser, et al. Kaggle: Your Machine Learning and Data Science Community. https://www.kaggle.com. [accessed Feb 2021].
C. Guo, Y.-l. Liu, and X. Jiao. Study on the influence of variable stride scale change on image recognition in CNN. Multimedia Tools and Applications, 78(21):30027-30037, 2018. https://doi.org/10.1007/s11042-018-6861-0. (Crossref)
K. He, X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition CVPR 2016, pages 770-778, Las Vegas, NV, USA, 27-30 Jun 2016. https://doi.org/10.1109/CVPR.2016.90. (Crossref)
G. Huang, Z. Liu, L. Van Der Maaten, et al. Densely connected convolutional networks. In Proc. IEEE Conf. Computer Vision and Pattern Recognition CVPR 2017, pages 4700-4708, Honolulu, HI, USA, 21-26 Jul 2017. IEEE. https://doi.org/10.1109/CVPR.2017.243. (Crossref)
H. Kittler, N. C. F. Codella, M. E. Celebi, et al. ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection. https://challenge2018.isic-archive.com.
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in neural information processing systems, volume 25, pages 1097-1105. Curran Associates, Inc., 2012. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015. https://doi.org/10.1038/nature14539. (Crossref)
G. Litjens, T. Kooi, B. E. Bejnordi, et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60-88, 2017. https://doi.org/10.1016/j.media.2017.07.005. (Crossref)
O. Marques, L. M. Mayron, G. B. Borba, and H. R. Gamba. Using visual attention to extract regions of interest in the context of image retrieval. In R. Menezes, editor, Proc. 44st Ann. Southeast Regional Conf., pages 638-643, Melbourne, FL, USA, 10-12 Mar 2006. ACM. https://doi.org/10.1145/1185448.1185588. (Crossref)
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014. arXiv: https://arxiv.org/abs/1409.1556.
P. Tschandl, C. Rosendahl, and H. Kittler. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5:180161, 2018. https://doi.org/10.1038/sdata.2018.161. (Crossref)
L. Zaniolo and O. Marques. On the use of variable stride in convolutional neural networks. Multimedia Tools and Applications, 79:13581–13598, 2020. https://doi.org/10.1007/s11042-019-08385-4. (Crossref)
Downloads
- Izabella Antoniuk, Artur Krupa, Radosław Roszczyk, Normal Patch Retinex robust algorithm for white balancing in digital microscopy , Machine Graphics and Vision: Vol. 29 No. 1/4 (2020)
You may also start an advanced similarity search for this article.