Main Article Content
Plant disease classification using machine learning in a real agricultural field environment is a difficult task. Often, an automated plant disease diagnosis method might fail to capture and interpret discriminatory information due to small variations among leaf sub-categories. Yet, modern Convolutional Neural Networks (CNNs) have achieved decent success in discriminating various plant diseases using leave images. A few existing methods have applied additional pre-processing modules or sub-networks to tackle this challenge. Sometimes, the feature maps ignore partial information for holistic description by part-mining. A deep CNN that emphasizes integration of partial descriptiveness of leaf regions is proposed in this work. The efficacious attention mechanism is integrated with high-level feature map of a base CNN for enhancing feature representation. The proposed method focuses on important diseased areas in leaves, and employs an attention weighting scheme for utilizing useful neighborhood information. The proposed Attention-based network for Plant Disease Classification (APDC) method has achieved state-of-the-art performances on four public plant datasets containing visual/thermal images. The best top-1 accuracies attained by the proposed APDC are: PlantPathology 97.74%, PaddyCrop 99.62%, PaddyDoctor 99.65%, and PlantVillage 99.97%. These results justify the suitability of proposed method.
Article Details
A. Ahmad, A. El Gamal, and D. Saraswat. Towards generalization of deep learning-based plant disease identification under controlled and field conditions. IEEE Access, 11, 2023. https://doi.org/10.1109/ACCESS.2023.3240100. (Crossref)
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In: Proc. 3rd International Conference on Learning Representations (ICLR). San Diego, CA, USA, 7-9 May 2015. https://doi.org/10.48550/arXiv.1409.0473.
G. Batchuluun, S. H. Nam, and K. R. Park. Deep learning-based plant classification and crop disease classification by thermal camera. Journal of King Saud University - Computer and Information Sciences, 34(10):10474-10486, 2022. https://doi.org/10.1016/j.jksuci.2022.11.003. (Crossref)
P. Bedi and P. Gole. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network. Artificial Intelligence in Agriculture, 5:90-101, 2021. https://doi.org/10.1016/j.aiia.2021.05.002. (Crossref)
A. Bera, D. Bhattacharjee, and O. Krejcar. PND-Net: plant nutrition deficiency and disease classification using graph convolutional network. Scientific Reports, 14(1):15537, 2024. https://doi.org/10.1038/s41598-024-66543-7. (Crossref)
A. Bera, O. Krejcar, and D. Bhattacharjee. Rafa-net: Region attention network for food items and agricultural stress recognition. IEEE Transactions on AgriFood Electronics, pp. 1-13, 2024. Early Access. https://doi.org/10.1109/TAFE.2024.3466561. (Crossref)
A. Bera, M. Nasipuri, O. Krejcar, and D. Bhattacharjee. Fine-grained sports, yoga, and dance postures recognition: A benchmark analysis. IEEE Transactions on Instrumentation and Measurement, 72:5020613, 2023. https://doi.org/10.1109/TIM.2023.3293564. (Crossref)
A. Bera, Z. Wharton, Y. Liu, N. Bessis, and A. Behera. SR-GNN: Spatial Relation-aware Graph Neural Network for fine-grained image categorization. IEEE Transactions on Image Processing, 31:6017-6031, 2022. https://doi.org/10.1109/TIP.2022.3205215. (Crossref)
I. Bhakta, S. Phadikar, K. Majumder, H. Mukherjee, and A. Sau. A novel plant disease prediction model based on thermal images using modified deep convolutional neural network. Precision Agriculture, 24:23–39, 2022. https://doi.org/10.1007/s11119-022-09927-x. (Crossref)
A. C. P. Calma, J. D. M. Guillermo, and C. C. Paglinawan. Cassava disease detection using MobileNetV3 algorithm through augmented stem and leaf images. In: Proc. 17th Int. Conf. Ubiquitous Information Management and Communication (IMCOM), pp. 1-6. IEEE, Seoul, Republic of Korea, 3-5 Jan 2023. https://doi.org/10.1109/IMCOM56909.2023.10035648. (Crossref)
Q. H. Cap, H. Uga, S. Kagiwada, and H. Iyatomi. LeafGAN: An effective data augmentation method for practical plant disease diagnosis. IEEE Transactions on Automation Science and Engineering, 19(2):1258-1267, 2020. https://doi.org/10.1109/TASE.2020.3041499. (Crossref)
J. Chen, W. Chen, A. Zeb, S. Yang, and D. Zhang. Lightweight inception networks for the recognition and detection of rice plant diseases. IEEE Sensors Journal, 22(14):14628-14638, 2022. https://doi.org/10.1109/JSEN.2022.3182304. (Crossref)
Y. Chen, X. Chen, J. Lin, R. Pan, T. Cao, et al. DFCANet: A novel lightweight convolutional neural network model for corn disease identification. Agriculture, 12(12):2047, 2022. https://doi.org/10.3390/agriculture12122047. (Crossref)
S. S. Chouhan, U. P. Singh, A. Kaul, and S. Jain. A data repository of leaf images: Practice towards plant conservation with plant pathology. In: Proc. 4th Int. Conf. Information Systems and Computer Networks, pp. 700-707. IEEE, Mathura, India, 21-22 Nov 2019. https://doi.org/10.1109/ISCON47742.2019.9036158. (Crossref)
F. Deng, W. Mao, Z. Zeng, H. Zeng, and B. Wei. Multiple diseases and pests detection based on federated learning and improved faster R-CNN. IEEE Transactions on Instrumentation and Measurement, 71:3523811, 2022. https://doi.org/10.1109/TIM.2022.3201937. (Crossref)
P. Gui, W. Dang, F. Zhu, and Q. Zhao. Towards automatic field plant disease recognition. Computers and Electronics in Agriculture, 191:106523, 2021. https://doi.org/10.1016/j.compag.2021.106523. (Crossref)
W. Gómez-Flores, J. J. Garza-Saldaña, and S. E. Varela-Fuentes. A huanglongbing detection method for orange trees based on deep neural networks and transfer learning. IEEE Access, 10:116686-116696, 2022. https://doi.org/10.1109/ACCESS.2022.3219481. (Crossref)
I. C. Hashim, A. R. M. Shariff, S. K. Bejo, F. M. Muharam, K. Ahmad, et al. Application of thermal imaging for plant disease detection. In: Proc. 10th IGRSM Int. Conf. and Exhibition on Geospatial & Remote Sensing, vol. 540 of IOP Conference Series: Earth and Environmental Science, p. 012052. IOP Publishing, Kuala Lumpur, Malaysia, 20-21 Oct 2020. https://doi.org/10.1088/1755-1315/540/1/012052. (Crossref)
G. Hu and M. Fang. Using a multi-convolutional neural network to automatically identify small-sample tea leaf diseases. Sustainable Computing: Informatics and Systems, 35:100696, 2022. https://doi.org/10.1016/j.suscom.2022.100696. (Crossref)
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2261-2269. Honolulu, HI, USA, 21-26 Jul 2017. https://doi.org/10.1109/CVPR.2017.243. (Crossref)
J. Huertas-Tato, A. Martín, J. Fierrez, and D. Camacho. Fusing CNNs and statistical indicators to improve image classification. Information Fusion, 79:174-187, 2022. https://doi.org/10.1016/j.inffus.2021.09.012. (Crossref)
D. Hughes, M. Salathé, et al. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv, 2016. ArXiv:1511.08060v2. https://doi.org/10.48550/arXiv.1511.08060.
H. Jin, Y. Li, J. Qi, J. Feng, D. Tian, et al. GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition. Computers and Electronics in Agriculture, 198:107055, 2022. https://doi.org/10.1016/j.compag.2022.107055. (Crossref)
B. Kiruba and P. Arjunan. Paddy Doctor: A visual image dataset for automated paddy disease classification and benchmarking. In: Proc. 6th Joint Int. Conf. Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD), pp. 203-207. Mumbai, India, 4-7 Jan 2023. https://doi.org/10.1145/3570991.3570994. (Crossref)
G. Li, L. Jiao, P. Chen, K. Liu, R. Wang, et al. Spatial convolutional self-attention-based transformer module for strawberry disease identification under complex background. Computers and Electronics in Agriculture, 212:108121, 2023. https://doi.org/10.1016/j.compag.2023.108121. (Crossref)
X. Li and S. Li. Transformer help CNN see better: A lightweight hybrid apple disease identification model based on transformers. Agriculture, 12(6):884, 2022. https://doi.org/10.3390/agriculture12060884. (Crossref)
J. Liu and X. Wang. Plant diseases and pests detection based on deep learning: A review. Plant Methods, 17(1):22, 2021. https://doi.org/10.1186/s13007-021-00722-9. (Crossref)
Y. Liu, G. Gao, and Z. Zhang. Crop disease recognition based on modified light-weight CNN with attention mechanism. IEEE Access, 10:112066-112075, 2022. https://doi.org/10.1109/ACCESS.2022.3216285. (Crossref)
J. Lu, L. Tan, and H. Jiang. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture, 11(8):707, 2021. https://doi.org/10.3390/agriculture11080707. (Crossref)
O. Mzoughi and I. Yahiaoui. Deep learning-based segmentation for disease identification. Ecological Informatics, p. 102000, 2023. https://doi.org/10.1016/j.ecoinf.2023.102000. (Crossref)
M. Nagaraju and P. Chawla. Maize crop disease detection using NPNet-19 convolutional neural network. Neural Computing and Applications, 22:3075–3099, 2022. https://doi.org/10.1007/s00521-022-07722-3. (Crossref)
A. Pal and V. Kumar. AgriDet: Plant leaf disease severity classification using agriculture detection framework. Engineering Applications of Artificial Intelligence, 119:105754, 2023. https://doi.org/10.1016/j.engappai.2022.105754. (Crossref)
J. Pan, T. Wang, and Q. Wu. RiceNet: A two stage machine learning method for rice disease identification. Biosystems Engineering, 225:54-68, 2023. https://doi.org/10.1016/j.biosystemseng.2022.11.007. (Crossref)
M. Pineda, M. Barón, and M.-L. Pérez-Bueno. Thermal imaging for plant stress detection and phenotyping. Remote Sensing, 13(1):68, 2021. https://doi.org/10.3390/rs13010068. (Crossref)
S.-e.-A. Raza, G. Prince, J. P. Clarkson, and N. M. Rajpoot. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PloS ONE, 10(4):e0123262, 2015. https://doi.org/10.1371/journal.pone.0123262. (Crossref)
K. Roy, S. S. Chaudhuri, J. Frnda, S. Bandopadhyay, I. J. Ray, et al. Detection of tomato leaf diseases for agro-based industries using novel PCA DeepNet. IEEE Access, 11:14983-15001, 2023. https://doi.org/10.1109/ACCESS.2023.3244499. (Crossref)
N. S. Russel and A. Selvaraj. Leaf species and disease classification using multiscale parallel deep CNN architecture. Neural Computing and Applications, 34(21):19217-19237, 2022. https://doi.org/10.1007/s00521-022-07521-w. (Crossref)
M. H. Saleem, J. Potgieter, and K. M. Arif. Plant disease detection and classification by deep learning. Plants, 8(11):468, 2019. https://doi.org/10.3390/plants8110468. (Crossref)
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In: Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), pp. 4510-4520. Salt Lake City, UT, USA, 18-23 Jun 2018. https://doi.org/10.1109/CVPR.2018.00474. (Crossref)
D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, et al. PlantDoc: A dataset for visual plant disease detection. In: CoDS COMAD 2020: Proc. 7th ACM IKDD CoDS and 25th COMAD, pp. 249-253. Hyderabad, India, 5-7 Jan 2020. https://doi.org/10.1145/3371158.3371196. (Crossref)
C. K. Sunil, C. D. Jaidhar, and N. Patil. Cardamom plant disease detection approach using EfficientNetV2. IEEE Access, 10:789-804, 2021. https://doi.org/10.1109/ACCESS.2021.3138920. (Crossref)
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2818-2826. Las Vegas, NV, USA, 27-30 Jun 2016. https://doi.org/10.1109/CVPR.2016.308. (Crossref)
H.-T. Thai, K.-H. Le, and N. L.-T. Nguyen. Formerleaf: An efficient vision transformer for Cassava Leaf Disease detection. Computers and Electronics in Agriculture, 204:107518, 2023. https://doi.org/10.1016/j.compag.2022.107518. (Crossref)
P. S. Thakur, P. Khanna, T. Sheorey, and A. Ojha. Explainable vision transformer enabled convolutional neural network for plant disease identification: PlantXViT. arXiv, 2022. ArXiv:2207.07919. https://doi.org/10.48550/arXiv.2207.07919.
P. S. Thakur, T. Sheorey, and A. Ojha. VGG-ICNN: A lightweight CNN model for crop disease identification. Multimedia Tools and Applications, 82(1):497–520, 2022. https://doi.org/10.1007/s11042-022-13144-z. (Crossref)
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, et al. Attention is all you need. In: Advances in Neural Information Processing Systems: Proc. NIPS 2017, vol. 30. Curran Associates, Inc., 2017. https://papers.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
D. Wang, J. Wang, Z. Ren, and W. Li. DHBP: A dual-stream hierarchical bilinear pooling model for plant disease multi-task classification. Computers and Electronics in Agriculture, 195:106788, 2022. https://doi.org/10.1016/j.compag.2022.106788. (Crossref)
Y. Wang, S. Wang, W. Ni, and Q. Zeng. PAST-net: a swin transformer and path aggregation model for anthracnose instance segmentation. Multimedia Systems, 29(3):1011-1023, 2022. https://doi.org/10.1007/s00530-022-01033-2. (Crossref)
G. Yang, G. Chen, Y. He, Z. Yan, Y. Guo, et al. Self-supervised collaborative multi-network for fine-grained visual categorization of tomato diseases. IEEE Access, 8:211912-211923, 2020. https://doi.org/10.1109/ACCESS.2020.3039345. (Crossref)
L. Yang, X. Yu, S. Zhang, H. Long, H. Zhang, et al. GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases. Computers and Electronics in Agriculture, 204:107543, 2023. https://doi.org/10.1016/j.compag.2022.107543. (Crossref)
S. Yu, L. Xie, and Q. Huang. Inception convolutional vision transformers for plant disease identification. Internet of Things, 21:100650, 2023. https://doi.org/10.1016/j.iot.2022.100650. (Crossref)
R. Zhang, Y. Wang, P. Jiang, J. Peng, and H. Chen. IBSA_Net: A network for tomato leaf disease identification based on transfer learning with small samples. Applied Sciences, 13(7):4348, 2023. https://doi.org/10.3390/app13074348. (Crossref)
Y. Zhang, S. Huang, G. Zhou, Y. Hu, and L. Li. Identification of tomato leaf diseases based on multi-channel automatic orientation recurrent attention network. Computers and Electronics in Agriculture, 205:107605, 2023. https://doi.org/10.1016/j.compag.2022.107605. (Crossref)
Y. Zhang, G. Zhou, A. Chen, M. He, J. Li, et al. A precise apple leaf diseases detection using bctnet under unconstrained environments. Computers and Electronics in Agriculture, 212:108132, 2023. https://doi.org/10.1016/j.compag.2023.108132. (Crossref)
Y. Zhao, Z. Chen, X. Gao, W. Song, Q. Xiong, et al. Plant disease detection using generated leaves based on DoubleGAN. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(3):1817-1826, 2021. https://doi.org/10.1109/TCBB.2021.3056683. (Crossref)
Y. Zhao, C. Sun, X. Xu, and J. Chen. RIC-Net: A plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism. Computers and Electronics in Agriculture, 193:106644, 2022. https://doi.org/10.1016/j.compag.2021.106644. (Crossref)
C. Zhou, Z. Zhang, S. Zhou, J. Xing, Q. Wu, et al. Grape leaf spot identification under limited samples by fine-grained GAN. IEEE Access, 9:100480-100489, 2021. https://doi.org/10.1109/ACCESS.2021.3097050. (Crossref)
W. Zhu, H. Chen, I. Ciechanowska, and D. Spaner. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine, 51(17):424-430, 2018. https://doi.org/10.1016/j.ifacol.2018.08.184. (Crossref)
B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image recognition. In: Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), pp. 8697-8710. Salt Lake City, UT, USA, 18-23 Jun 2018. https://doi.org/10.1109/CVPR.2018.00907. (Crossref)
X. Zuo, J. Chu, J. Shen, and J. Sun. Multi-granularity feature aggregation with self-attention and spatial reasoning for fine-grained crop disease classification. Agriculture, 12(9):1499, 2022. https://doi.org/10.3390/agriculture12091499. (Crossref)