EBMBDT: Effective Block Matching Based Denoising Technique using dual tree complex wavelet transform

Main Article Content

M. Selvi


Keywords : image denoising, Complex Wavelet Transform (CWT), dual tree CWT, block matching, soft thresholding
Abstract
In processing and investigation of digital image denoising of images is hence very important. In this paper, we propose a Hybrid de-noising technique by using Dual Tree Complex Wavelet Transform (DTCWT) and Block Matching Algorithm (BMA). DTCWT and BMA is a method to identify the noisy pixel information and remove the noise in the image. The noisy image is given as input at first. Then, bring together the comparable image blocks into the load. Afterwards Complex Wavelet Transform (CWT) is applied to each block in the group. The analytic filters are made use of by CWT, i.e. their real and imaginary parts from the Hilbert Transform (HT) pair, defending magnitude-phase representation, shift invariance, and no aliasing. After that, adaptive thresholding is applied to enhance the image in which the denoising result is visually far superior. The proposed method has been compared with our previous de-noising technique with Gaussian and salt-pepper noise. From the results, we can conclude that the proposed de-noising technique have shown better values in the performance analysis.

Article Details

How to Cite
Selvi, M. (2014). EBMBDT: Effective Block Matching Based Denoising Technique using dual tree complex wavelet transform. Machine Graphics and Vision, 23(3/4), 23–41. https://doi.org/10.22630/MGV.2014.23.3.3
References

McVeigh E. R., Henkelman R. M., Bronskill M. J.: Noise and filtration in magnetic resonance imaging. Med. Phys., 12(5):586-591, 1985. (Crossref)

Simoncelli E. P., Freeman W. T., Adelson E. H., Heeger D. J.: Shiftable multi-scale transforms. IEEE Transaction of Information Theory, 38(2):587-607, 1992. (Crossref)

Antoine P., Carrette P., Murenzi R., Piette B.: Image analysis with two-dimensional continuous wavelet transform. Signal Processing, 31:241-272, 1993. (Crossref)

David L. Donoho: De-noising by soft thresholding. IEEE Transactions on Information Theory, 41(3):613-627, 1995. (Crossref)

Candes E. J., Donoho D.: Curvelets – a surprisingly effective non adaptive representation for objects with edges. In: Curve and Surface Fitting, Saint-Malo, Vanderbuilt University Press, 1999.

Kingsbury N.: Image processing with complex wavelets. Phil. Trans. R. Soc. London, UK, 1999. (Crossref)

de Rivaz P., Kingsbury N.: Complex wavelet features for fast texture image retrieval. In: Proc. of the IEEE International Conference in Image Processing, 1999.

Kingsbury N.: Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, 2000. (Crossref)

Do M. N.: Directional multiresolution image representations. Ph.D. thesis, EPFL, Lausanne, Switzerland, 2001.

Romberg J. K., Choi H., Baraniuk R. G., Kingsbury N. G.: Hidden Markov tree models for complex wavelet transforms. IEEE Transactions on Signal Processing, 2002.

Gnanadurai D., Sadasivam V.: An efficient adaptive thresholding technique for wavelet based image denoising. International Journal of Signal Processing, 2(2):114-119, 2005.

Marusic S., Deng G., Tay D.: Image Denoising Using Over-Complete Wavelet Representations. In: Proc. of the 13th European Signal Processing Conference, Antalya, Turkey, 2005.

Selesnick I. W., Baraniuk R. G., Kingsbury N. G.: The Dual-Tree Complex Wavelet Transform. IEEE Signal Processing Magazine, 22(6):123-151, 2005. (Crossref)

Arivazhagan S., Deivalakshmi S., Kannan K.: Performance Analysis of Image Denoising System for different levels of Wavelet decomposition. International Journal of Imaging Science and Engineering (IJISE), 1(3):104-107, 2007.

Kachouie N. N.: Image Denoising Using Earth Mover’s Distance and Local Histograms. International Journal of Image Processing, 4(1):66-76, 2008.

Aliaa A. A. Youssif, Darwish A. A., Madbouly A. M. M.: Adaptive Algorithm for Image Denoising Based on Curvelet Threshold. IJCSNS International Journal of Computer Science and Network Security, 10(1):322-328, 2010.

Howlader T., Chaubey Y.P.: Noise Reduction of cDNA Microarray Images Using Complex Wavelets. IEEE Transactions On Image Processing, 19(8), 2010. (Crossref)

Huhle B., Schairer T., Jenke P., Straßer W.: Fusion of range and color images for denoising and resolution enhancement with a non-local filter. Computer Vision and Image Understanding, 114:1336-1345, 2010. (Crossref)

Palhano Xavier de Fontes F., Barroso G. A., Coupe P., Hellier P.: Real time ultrasound image denoising. Journal of Real-Time Image Processing, 2:1-14, 2010. (Crossref)

Chandan R., Sukadev M. A.: Hybrid Image Compression Scheme Using DCT and Fractal Image Compression. The International Arab Journal of Information, 10(6), 2010.

Moreno R., Garcia M. A., Puig D., Julià C.: Edge-preserving color image denoising through tensor voting. Computer Vision and Image Understanding, 115:1536-1551, 2011. (Crossref)

Chen G., Zhu W.P., Xie W.: Wavelet-based image denoising using three scales of dependency. IET Image Processing, 6(6):756-760, 2012. (Crossref)

Jaiswal A., Upadhyay J., Somkuwar A.: Image denoising and quality measurements by using filtering and wavelet based techniques. Int. J. Electron. Commun. (AEÜ), 68(8):699-705, 2014. (Crossref)

Remenyi N., Nicolis O., Nason G., Vidakovic B.: Image Denoising With 2D Scale-Mixing Complex Wavelet Transforms. IEEE Transactions On Image Processing, 23(12):5165-5174, 2014. (Crossref)

Srinivasan L., Rakvongthai Y., Oraintara S.: Microarray Image Denoising Using Complex Gaussian Scale Mixtures of Complex Wavelets. IEEE Journal Of Biomedical And Health Informatics, 18(4):1423-1430, 2014. (Crossref)

Wang X.-Y., Liu Y.-C., Yang H.-Y.: Image denoising in extended Shearlet domain using hidden Markov tree models. Digital Signal Processing, 30:101-113, 2014. (Crossref)

Adamou-Mitiche A. B. H., Mitiche L., Naimi H.: Medical image denoising using dual tree complex thresholding wavelet transform and Wiener filter. Journal of King Saud University – Computer and Information Sciences, 27(1):40-45, 2015. (Crossref)

Statistics
Recommend Articles