Syntactic pattern recognition of ECG for diagnostic justification

Main Article Content

Piotr Flasiński


Keywords : syntactic pattern recognition, ECG analysis, diagnostic justification
Abstract
A novel hybrid structural-parametric model for ECG diagnostic justification is presented in the paper. In order to distinguish between specific subclasses of heart dysfunction phenomena both grammars and automata are enhanced with a formalism of dynamic programming. It allows one to construct a system, which is feasible for aiding a process of teaching and evaluating medical students' diagnostic reasoning in the area of electrocardiography.

Article Details

How to Cite
Flasiński, P. (2014). Syntactic pattern recognition of ECG for diagnostic justification. Machine Graphics and Vision, 23(3/4), 43–55. https://doi.org/10.22630/MGV.2014.23.3.4
References

Stallmann F. W., Pipberger H. V.: Automatic recognition of electrocardiographic waves by digital computer. Circ. Res., 9:1138-1143, 1961. (Crossref)

Rosenkrantz D. J.: Programmed grammars and classes of formal languages. Journal of the Association for Computing Machinery, 16:107-131, 1969. (Crossref)

Horowitz S. L.: A syntactic algorithm for peak detection in waveforms with applications to cardiography. Comm. ACM, 18:281-285, 1975. (Crossref)

Pavlidis T.: Structural Pattern Recognition. Springer, New York, 1977. (Crossref)

Gonzales R. C., Thomason M. G.: Syntactic Pattern Recognition: An Introduction. Addison-Wesley, Reading, 1978.

Belferte G., De Mori R., Ferraris F.: A contribution to the automatic processing of electrocardiograms using syntactic methods. IEEE Trans. Biomed. Eng., 26:125-136, 1979. (Crossref)

Udupa J., Murthy I. S. N.: Syntactic approach to ECG rhythm analysis. IEEE Trans. Biomed. Eng., 27:370-375, 1980. (Crossref)

Fu K. S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs, 1982.

Bunke H. O.: Graph grammars as a generative tool in image understanding. Lecture Notes in Computer Science, 153:8-19, 1983. (Crossref)

Pan J., Tompkins W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng., 32:230-236, 1985. (Crossref)

Papakonstantinou G., Skordalakis E., Gritzali F.: An attribute grammar for QRS detection. Pattern Recognition, 19:297-303, 1986. (Crossref)

Patel V., Groen G.: Knowledge based solution strategies in medical reasoning. Cognitive Science, 10:91-116, 1986. (Crossref)

Skordalakis E.: Syntactic ECG processing: a review. Pattern Recognition, 19:305-313, 1986. (Crossref)

Bunke H. O., Sanfeliu A. (eds.): Syntactic and Structural Pattern Recognition - Theory and Applications. World Scientific, Singapore, 1990. (Crossref)

Trahanias P., Skordalakis E.: Syntactic pattern recognition of the ECG. IEEE Trans. Patt. Analysis Mach. Intell., 12:648-657, 1990. (Crossref)

Piętka E.: Feature extraction in computerized approach to the ECG analysis. Pattern Recognition, 24:139-146, 1991. (Crossref)

Koski A., Juhola M., Meriste M.: Syntactic recognition of ECG signals by attributed finite automata. Pattern Recognition, 28:1927-1940, 1995. (Crossref)

Gilhooly K. J., McGeorge P., Hunter J. et al.: Biomedical knowledge in diagnostic thinking: the case of electrocardiogram (ECG) interpretation. European Journal of Cognitive Psychology, 9:199-223, 1997. (Crossref)

Kolykhalov I. V., Iznak, A. F., Chayanov N. V. et al.: EEG mapping in diagnostic assessment of patients with mild dementia. European Neuropsychopharmacology, 7:248, 1997. (Crossref)

Barro S., Fernandez-Delgado M., Villa-Sobrino J. A., Regueiro C. V., Sanchez E.: Classifying multichannel ECG patterns with an adaptive neural network. IEEE Eng. Med. Biol. Mag., 17:45-55, 1998. (Crossref)

Maglaveras N., Stamkopoulos T., Diamantaras K., Pappas C., Strintzis M.: ECG pattern recognition and classification using non-linear transforms and neural networks: a review. Int. J. Med. Inform., 52:191-208, 1998. (Crossref)

Flasiński M., Jurek J.: Dynamically programmed automata for quasi context sensitive languages as a tool for inference support in pattern recognition-based real-time control expert systems. Pattern Recognition, 32:671-690, 1999. (Crossref)

Osowski S., Linh T.H.: ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng., 48:1265-1271, 2001. (Crossref)

Sternickel K.: Automatic pattern recognition in ECG time series. Comp. Meth. Programs in Biomedicine, 68:109-115, 2002. (Crossref)

Tumer M. B., Belfore L. A., Ropella K. M.: A syntactic methodology for automatic diagnosis by analysis of continuous time measurements using hierarchical signal representations. IEEE Trans. on Syst. Man Cybern., 33:951-965, 2003. (Crossref)

Engin M.: ECG beat classification using neuro-fuzzy network. Patt. Rec. Lett., 25:1715-1722, 2004. (Crossref)

Flasiński M., Reroń E., Wójtowicz P., Atlasiewicz K.: Mathematical linguistics model for medical diagnostics of organ hearing in neonates, Lecture Notes in Computer Science (LNAI), 3019:746-753, 2004. (Crossref)

Tadeusiewicz R., Ogiela M. R.: Medical Image Understanding Technology. Springer, Berlin-Heidelberg-New York, 2004. (Crossref)

Flasiński M., Jurek J.: On the analysis of fuzzy string patterns with the help of extended and stochastic GDPLL(k) grammars. Fundamenta Informaticae, 71:1-14, 2006.

Dong J., Xu S., Zhan C.: ECG recognition and classification: approaches, problems and new method. J. Biomed. Eng., 24:1224-1229, 2007.

McLaughlin K. J.: The Contribution of Analytic Information Processing to Diagnostic Performance in Medicine, Ph.D. Thesis, Erasmus University Rotterdam, 2007.

Martis R. J., Chakraborty C., Ray A. K.: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition, 42:2979-2988, 2009. (Crossref)

Noponen K., Kortelainen J., Seppanen T.: Invariant trajectory classification of dynamical systems with a case study on ECG. Pattern Recognition, 42:1832-1844, 2009. (Crossref)

Cianciolo A. T., Williams R. G., Klamen D. L., Roberts N.K.: Biomedical knowledge, clinical cognition and diagnostic justification: a structural equation model. Medical Education, 47:309-316, 2013. (Crossref)

Flasiński M., Flasiński P., Konduracka E.: On the use of programmed automata for verification of ECG diagnoses. Advances in Intelligent Systems and Computing 226, Springer, Berlin-Heidelberg-New York, 591-599, 2013. (Crossref)

Williams R. G., Klamen D. L., Markwell S. J. et al: Variations in senior medical student diagnostic justification ability. Academic Medicine, 89:790-798, 2014. (Crossref)

Statistics
Recommend Articles