A framework for fluid motion estimation using a constraint-based refinement approach

Main Article Content

Hirak Doshi
Uday Kiran Nori


Keywords : fluid motion estimation, evolutionary PDE, image processing, augmented Lagrangian, bounded constraint algorithm
Abstract

Physics-based optical flow models have been successful in capturing the deformities in fluid motion arising from digital imagery. However, a common theoretical framework analyzing several physics-based models is missing. In this regard, we formulate a general framework for fluid motion estimation using a constraint-based refinement approach. We demonstrate that for a particular choice of constraint, our results closely approximate the classical continuity equation-based method for fluid flow. This closeness is theoretically justified by augmented Lagrangian method in a novel way. The convergence of Uzawa iterates is shown using a modified bounded constraint algorithm. The mathematical well-posedness is studied in a Hilbert space setting. Further, we observe a surprising connection to the Cauchy-Riemann operator that diagonalizes the system leading to a diffusive phenomenon involving the divergence and the curl of the flow. Several numerical experiments are performed and the results are shown on different datasets. Additionally, we demonstrate that a flow-driven refinement process involving the curl of the flow outperforms the classical physics-based optical flow method without any additional assumptions on the image data.

Article Details

How to Cite
Doshi, H., & Nori, U. K. (2023). A framework for fluid motion estimation using a constraint-based refinement approach. Machine Graphics and Vision, 32(3/4), 17–43. https://doi.org/10.22630/MGV.2023.32.3.2
References

P. Altomare, S. Milella, G. Musceo. Multiplicative Perturbation of the Laplacian and Related Approximation Problems, Journal of Evolution Equations, 771-792, 2011. https://doi.org/10.1007/s00028-011-0110-6. (Crossref)

G. Aubert, R. Deriche, P. Kornprobst. Computing Optical Flow via Variational Techniques, SIAM Journal of Applied Mathematics, 60:156-182, 1999. https://doi.org/10.1137/S0036139998340170. (Crossref)

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7. (Crossref)

T. Corpetti, E. Mémin, P. Pérez. Estimating Fluid Optical Flow, Proceedings of the 15th International Conference on Pattern Recognition (ICPR2000), 3:1033-1036, 2000. https://doi.org/10.1109/ICPR.2000.903722. (Crossref)

T. Corpetti, D. Heitz, G. Arroyo, E. Mémin, A. Santa-Cruz. Fluid Experimental Flow Estimation based on an Optical Flow Scheme, Experiments in Fluids, 40:80-97, 2006. https://doi.org/10.1007/s00348-005-0048-y. (Crossref)

X. Chen, P. Zillé, L. Shao, T. Corpetti. Optical Flow for Incompressible Turbulence Motion Estimation, Experiments in Fluids, 56:8, 2015. https://doi.org/10.1007/s00348-014-1874-6. (Crossref)

P. Eidus, The Perturbed Laplace Operator in a weighted L2 space, Journal of Functional Analysis, 100:400-410, 1991. https://doi.org/10.1016/0022-1236(91)90117-N. (Crossref)

J. Carlier, R. Cemagref. FLUID. Image sequence database. http://fluid.irisa.fr/data-eng.htm (Accessed: December 2023).

J. Carlier. Second set of fluid mechanics image sequences. European project FLUid Image analysis and Description, 2005. https://cordis.europa.eu/project/id/513663.

R. Glowinski, P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, 1989. https://doi.org/10.1137/1.9781611970838. (Crossref)

D. Heitz, E. Mémin, C. Schnörr. Variational Fluid Flow measurements from Image Sequences: Synopsis and Perspectives, Experiments in Fluids, 48:369-393, 2010. https://doi.org/10.1007/s00348-009-0778-3. (Crossref)

W. Hinterberger, O. Scherzer, C. Schnörr, J. Weickert. Analysis of Optical Flow Models in the Framework of Calculus of Variations, Numerical Functional Analysis and Optimization, 23(1-2):69-89, 2002. https://doi.org/10.1081/NFA-120004011. (Crossref)

B. K. P Horn, B. G. Schunck. Determining Optical Flow, Artificial Intelligence, 17:185-203, 1981. https://doi.org/10.1016/0004-3702(81)90024-2. (Crossref)

T. Liu. OpenOpticalFlow: An Open Source Program for Extraction of Velocity Fields from Flow Visualization Images, Journal of Open Research Software, 5:29, 2017. https://doi.org/10.5334/jors.168. (Crossref)

T. Liu, L. Shen. Fluid Flow and Optical Flow, Journal of Fluid Mechanics, 614:253-291, 2008. https://doi.org/10.1017/S0022112008003273. (Crossref)

A. Luttman, E. M. Bollt, R. Basnayake, S. Kramer, N.B. Tufillaro. A Framework for Estimating Potential Fluid Flow from Digital Imagery, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23:3, 2013. https://doi.org/10.1063/1.4821188. (Crossref)

J. Nocedal, S. J. Wright. Numerical Optimization, 2nd Edition, Springer, 2006. https://doi.org/10.1007/b98874. (Crossref)

C. Schnörr. Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class, International Journal of Computer Vision, 6:25-38, (1991). https://doi.org/10.1007/BF00127124. (Crossref)

B. Wang, Z. Cai, L. Shen, T. Liu. An Analyis of Physics-based Optical Flow, Journal of Computational and Applied Mathematics, 276:62-80, 2015. https://doi.org/10.1016/j.cam.2014.08.020. (Crossref)

J. Weickert, C. Schnörr. A Theoritical Framework for Convex Regularizers in PDE-based Computation of Image Motion, International Journal of Computer Vision, 45:245-264, 2001. https://doi.org/10.1023/A:1013614317973. (Crossref)

R. P. Wildes, M. J. Amabile, A. Lanzillotto, T. Leu. Recovering Estimates of Fluid Flow from Image Sequence Data, Computer Vision and Image Understanding, 80:246-266, 2000. https://doi.org/10.1006/cviu.2000.0874. (Crossref)

T. Liu. OpenOpticalFlow. GitHub repository, 2021. https://github.com/Tianshu-Liu/OpenOpticalFlow (Accessed: December 2023).

Statistics

Downloads

Download data is not yet available.
Recommend Articles