Fracture fusion: Revolutionizing the recognition of bone fractures with MetaMag Efficiency approach

Main Article Content

S. Rajeashwari
Dr. K. Arunesh

Abstract

Bone fractures are common in diabetic patients and can result in several musculoskeletal conditions. Both type 1 and type 2 diabetes substantially increase the risk and severity of bone fractures. Prompt treatment and management of diabetes and its complications are crucial to mitigate this serious complication. Detection and diagnosis in its early stage can reduce the challenging conditions in treatment. Traditional image processing techniques like digital-geometric analysis, entropy measures, and gray-level co-occurrence matrices have been used for automated bone fracture detection. However, these detection methods rely neither on healthy controls nor diabetic-affected patients. Only few studies focused on detecting fractures in diabetic patients. The rising prevalence of diabetic ankle fractures made the study emphasize the development of a fracture detection model based on the Meta Magnify (MetaMag) efficiency model. The proposed model involves the Lower Extremity Radiographs (LERA) dataset, which consists of image samples of normal and abnormal lower extremities of the body, such as the hip, ankle, knee, and foot. Pre-processing involves a one-hot encoding method that handles the missing data and represents categorical variables as numerical values. Further, the classification is performed using the MetaMag efficiency model, incorporated with MetaMag scaling and unified normalization. Further, the efficiency of the proposed model is analyzed by comparing it with conventional EfficientNet and another model. Finally, the proposed work's performance is analyzed using evaluation measures such as accuracy, precision, recall and F1-score. The results indicate the improved efficiency of the model.

Article Details

How to Cite
Rajeashwari, S., & Arunesh, D. K. (2024). Fracture fusion: Revolutionizing the recognition of bone fractures with MetaMag Efficiency approach. Machine Graphics and Vision, 33(1), 69–93. https://doi.org/10.22630/MGV.2024.33.1.4
References

R. Ali, J. H. Chuah, M. S. A. Talip, N. Mokhtar, and M. A. Shoaib. Structural crack detection using deep convolutional neural networks. Automation in Construction, 133:103989, 2022. https://doi.org/10.1016/j.autcon.2021.103989. (Crossref)

M. J. Awan, M. S. M. Rahim, N. Salim, M. A. Mohammed, B. Garcia-Zapirain, et al. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Diagnostics, 11(1):105, 2021. https://doi.org/10.3390/diagnostics11010105. (Crossref)

R. Bagaria, S. Wadhwani, and A. K. Wadhwani. Bone fracture detection in X-ray images using convolutional neural network. In: SCRS Conference Proceedings on Intelligent Systems, pp. 459-466. SCRS, India, 2022. https://doi.org/10.52458/978-93-91842-08-6-43. (Crossref)

Z. Cao, L. Xu, D. Z. Chen, H. Gao, and J. Wu. A robust shape-aware rib fracture detection and segmentation framework with contrastive learning. IEEE Transactions on Multimedia, 25:1584-1591, 2023. https://doi.org/10.1109/TMM.2023.3263074. (Crossref)

W. Chen, D. HolcDorf, M. W. McCusker, F. Gaillard, and P. D. Howe. Perceptual training to improve hip fracture identification in conventional radiographs. PloS One, 12(12):e0189192, 2017. https://doi.org/10.1371/journal.pone.0189192. (Crossref)

P. Chłąd and M. R. Ogiela. Deep learning and cloud-based computation for cervical spine fracture detection system. Electronics, 12(9):2056, 2023. https://doi.org/10.3390/electronics12092056. (Crossref)

M. Davenport and M. P. Oczypok. Knee and leg injuries. Emergency Medicine Clinics, 38(1):143-165, 2020. https://doi.org/10.1016/j.emc.2019.09.012. (Crossref)

M. R. Delavar. Hybrid machine learning approaches for classification and detection of fractures in carbonate reservoir. Journal of Petroleum Science and Engineering, 208:109327, 2022. https://doi.org/10.1016/j.petrol.2021.109327. (Crossref)

C. Germann, A. N. Meyer, M. Staib, R. Sutter, and B. Fritz. Performance of a deep convolutional neural network for MRI-based vertebral body measurements and insufficiency fracture detection. European Radiology, 33(5):3188-3199, 2023. https://doi.org/10.1007/s00330-022-09354-6. (Crossref)

N. Gougoulias, H. Oshba, A. Dimitroulias, A. Sakellariou, and A. Wee. Ankle fractures in diabetic patients. EFORT Open Reviews, 5(8):457-463, 2020. https://doi.org/10.1302/2058-5241.5.200025. (Crossref)

O. Q. Groot, M. E. R. Bongers, P. T. Ogink, J. T. Senders, A. V. Karhade, et al. Does artificial intelligence outperform natural intelligence in interpreting musculoskeletal radiological studies? A systematic review. Clinical Orthopaedics and Related Research, 478(12):2751, 2020. https://doi.org/10.1097/CORR.0000000000001360. (Crossref)

B. Guan, J. Yao, G. Zhang, and X. Wang. Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network. Pattern Recognition Letters, 125:521-526, 2019. https://doi.org/10.1016/j.patrec.2019.06.015. (Crossref)

K. Karthik and S. S. Kamath. MSDNet: A deep neural ensemble model for abnormality detection and classification of plain radiographs. Journal of Ambient Intelligence and Humanized Computing, 14:16099–16113, 2023. https://doi.org/10.1007/s12652-022-03835-8. (Crossref)

C. Kokkotis, S. Moustakidis, G. Giakas, and D. Tsaopoulos. Identification of risk factors and machine learning-based prediction models for knee osteoarthritis patients. Applied Sciences, 10(19):6797, 2020. https://doi.org/10.3390/app10196797. (Crossref)

S. Kumar, P. Goswami, and S. Batra. Fuzzy rank-based ensemble model for accurate diagnosis of osteoporosis in knee radiographs. International Journal of Advanced Computer Science and Applications, 14(4):262-270, 2023. https://doi.org/10.14569/IJACSA.2023.0140430. (Crossref)

Y. Ma and Y. Luo. Bone fracture detection through the two-stage system of crack-sensitive convolutional neural network. Informatics in Medicine Unlocked, 22:100452, 2021. https://doi.org/10.1016/j.imu.2020.100452. (Crossref)

Stanford University School of Medicine. LERA- Lower Extremity RAdiographs, 2024. https://aimi.stanford.edu/lera-lower-extremity-radiographs.

M. Ren and P. H. J. S. R. Yi. Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern. Skeletal Radiology, 51(2):345-353, 2022. https://doi.org/10.1007/s00256-021-03739-2. (Crossref)

A. Sasidhar, M. Thanabal, and P. Ramya. Efficient transfer learning model for humerus bone fracture detection. Annals of the Romanian Society for Cell Biology, 25(2):3932-3942, 2021. http://annalsofrscb.ro/index.php/journal/article/view/1398.

T. Schmidt, N. M. Simske, M. A. Audet, A. Benedick, C.-Y. Kim, et al. Effects of diabetes mellitus on functional outcomes and complications after torsional ankle fracture. Journal of the American Academy of Orthopaedic Surgeons, 28(16):661-670, 2020. https://doi.org/10.5435/JAAOS-D-19-00545. (Crossref)

H. Sun, X. Wang, Z. Li, A. Liu, S. Xu, et al. Automated rib fracture detection on chest X-ray using contrastive learning. Journal of Digital Imaging, 36(5):2138-2147, 2023. https://doi.org/10.1007/s10278-023-00868-z. (Crossref)

Y. L. Thian, Y. Li, P. Jagmohan, D. Sia, V. E. Y. Chan, et al. Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiology: Artificial Intelligence, 1(1):e180001, 2019. https://doi.org/10.1148/ryai.2019180001. (Crossref)

K. A. Thomas, Ł. Kidziński, E. Halilaj, S. L. Fleming, G. R. Venkataraman, et al. Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiology: Artificial Intelligence, 2(2):e190065, 2020. https://doi.org/10.1148/ryai.2020190065. (Crossref)

M. Tian, B. Li, H. Xu, D. Yan, Y. Gao, et al. Deep learning assisted well log inversion for fracture identification. Geophysical Prospecting, 69(2):419-433, 2021. https://doi.org/10.1111/1365-2478.13054. (Crossref)

M. Varma, M. Lu, R. Gardner, J. Dunnmon, N. Khandwala, et al. Automated abnormality detection in lower extremity radiographs using deep learning. Nature Machine Intelligence, 1(12):578-583, 2019. https://doi.org/10.1038/s42256-019-0126-0. (Crossref)

S. Verma, S. Kulshrestha, C. Rajput, and S. Patel. Detecting bone fracture using transfer learning. In: O. P. Verma, S. Roy, S. C. Pandey, and M. Mittal, eds., Advancement of Machine Intelligence in Interactive Medical Image Analysis, pp. 215-228, Algorithms for Intelligent Systems. Springer Singapore, 2020. https://doi.org/10.1007/978-981-15-1100-4_10. (Crossref)

M. Wu, Z. Chai, G. Qian, H. Lin, Q. Wang, et al. Development and evaluation of a deep learning algorithm for rib segmentation and fracture detection from multicenter chest CT images. Radiology: Artificial Intelligence, 3(5):e200248, 2021. https://doi.org/10.1148/ryai.2021200248. (Crossref)

L. Xue, W. Yan, P. Luo, X. Zhang, T. Chaikovska, et al. Detection and localization of hand fractures based on GA_Faster R-CNN. Alexandria Engineering Journal, 60(5):4555-4562, 2021. https://doi.org/10.1016/j.aej.2021.03.005. (Crossref)

D. P. Yadav, A. Sharma, S. Athithan, A. Bhola, B. Sharma, et al. Hybrid SFNet model for bone fracture detection and classification using ML/DL. Sensors, 22(15):5823, 2022. https://doi.org/10.3390/s22155823. (Crossref)

J. Zhang, Z. Li, S. Yan, H. Cao, J. Liu, et al. An algorithm for automatic rib fracture recognition combined with nnU-Net and DenseNet. Evidence-Based Complementary and Alternative Medicine, 2022(1):5841451, 2022. https://doi.org/10.1155/2022/5841451. (Crossref)

K. Üreten, H. F. Sevinç, U. İğdeli, A. Onay, and Y. Maraş. Use of deep learning methods for hand fracture detection from plain hand radiographs. Turkish Journal of Trauma and Emergency Surgery, 28(2):196, 2022. https://doi.org/10.14744/tjtes.2020.06944. (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles