Isocontouring with sharp corner features

Main Article Content

Sui Gong
Timothy Newman


Keywords : marching squares, feature preservation, corner recovery, contour finding, isocontours
Abstract
A method that achieves closed boundary finding in images (including slice images) with sub-pixel precision while enabling expression of sharp corners in that boundary is described. The method is a new extension to the well-known Marching Squares (MS) 2D isocontouring method that recovers sharp corner features that MS usually recovers as chamfered. The method has two major components: (1) detection of areas in the input image likely to contain sharp corner features, and (2) examination of image locations directly adjacent to the area with likely corners. Results of applying the new method, as well as its performance analysis, are also shown.

Article Details

How to Cite
Gong, S., & Newman, T. (2018). Isocontouring with sharp corner features. Machine Graphics and Vision, 27(1/4), 21–46. https://doi.org/10.22630/MGV.2018.27.1.2
References

M. Cammarano. Depicting terrain with shaded relief maps. Stanford Univ. Class Report, 2004. http://graphics.stanford.edu/~mcammara/vis2004/paper.pdf. Accessed: Sept 22, 2015.

P. B. Chamberlain and C. L. Thomas. Direct thick layer rapid prototyping from medical images. In Proc. 10th Solid Freeform Fabrication Symp. SFF ’99, pages 599–605, Austin, TX, August 9-11, 1999. http://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-069-Chamberlain.pdf.

M. P. Cipolletti, C. A. Delrieux, G Perillo, and M. C. Piccolo. Superresolution border segmentation and measurement in remote sensing images. Computers & Geosciences, 40:87–96, March 2012. https://doi.org/10.1016/j.cageo.2011.07.015. (Crossref)

C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with isocontours over existing visualizations. IEEE Trans. Vis. and Comp. Graphics, 15(6):1009–1016, November 2009. https://doi.org/10.1109/TVCG.2009.122. (Crossref)

Fishing accident. http://radiopaedia.org/cases/fishing-accident. Accessed: September 22, 2015.

A. Fofonov, V. Molchanov, and L. Linsen. Visual analysis of multi-run spatio-temporal simulations using isocontour similarity for projected views. to appear in IEEE Trans. Vis. and Comp. Graphics, pages 2037–2050, 2016. https://doi.org/10.1109/TVCG.2015.2498554. (Crossref)

H. Freeman. Computer processing of line-drawing images. ACM Comput. Surv., 6(1):57–97, March 1974. https://doi.org/10.1145/356625.356627. (Crossref)

Q. Gao, S. M. Ali, and P. Edwards. Automated atlas-based pelvimetry using hybrid registration. In Proc. IEEE 10th Int. Symp. Biomedical Imaging ISBI 2013, pages 1292–1295, San Francisco, USA, April 2013. https://doi.org/10.1109/ISBI.2013.6556768. (Crossref)

S. Gong and T. S. Newman. A corner feature sensitive marching squares. In Proc. IEEE Southeastcon SECON 2013, pages 1–6, Jacksonville, USA, April 2013. https://doi.org/10.1109/SECON.2013.6567363. (Crossref)

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, 3 edition, 2007.

T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1134–1141, Los Angeles, CA, USA, 2005. ACM. https://doi.org/10.1145/1186822.1073323. (Crossref)

L. S. Johnson. Progressive transmission of surfaces with geometric constraints. Master’s thesis, Univ. of South Carolina, 2004.

T. Kaneko and Y. Yamamoto. Volume-preserving surface reconstruction from volume data. In Proc. Int. Conf. Image Processing ICIP ’97, volume 1, pages 145–148, Santa Barbara, USA, October 1997. https://doi.org/10.1109/ICIP.1997.647405. (Crossref)

L. P. Kobbelt, M. Botsch, U. Schwanecke, and H-P. Seidel. Feature sensitive surface extraction from volume data. In Proc. 28th Ann. Conf. Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages 57–66, New York, NY, USA, 2001. ACM. https://doi.org/10.1145/383259.383265. (Crossref)

K. R. Krishnan and S. Radhakrishnan. Focal and diffused liver disease classification from ultrasound images based on isocontour segmentation. IET Image Proc., 9(4):261–270, 2015. https://doi.org/10.1049/iet-ipr.2014.0202. (Crossref)

H. Mantz, K. Jacobs, and K. Mecke. Utilizing Minkowski functionals for image analysis: A marching square algorithm. J. Statistical Mechanics: Theory and Experiment, 2008(12):P12105, 2008. https://doi.org/10.1088/1742-5468/2008/12/P12015. (Crossref)

C. Maple. Geometric design and space planning using the marching squares and marching cube algorithms. In Proc. Int. Conf. Geometric Modeling and Graphics GMAG 2003, pages 90–95, July 2003. https://doi.org/10.1109/GMAG.2003.1219671. (Crossref)

P. Moinier, J-D. Muller, and M. B. Giles. Edge-based multigrid and preconditioning for hybrid grids. AIAA Journal, 40(10):1954–1960, 2002. https://doi.org/10.2514/2.1556. (Crossref)

M. Muller. Fast and robust tracking of fluid surfaces. In Proc. 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’09, pages 237–245, New Orleans, Louisiana, USA, 2009. ACM. https://doi.org/10.1145/1599470.1599501. (Crossref)

A. Murthy, E. Bartocci, F. Fento, et al. Curvature analysis of cardiac excitation wavefronts. IEEE Trans. Computational Biology and Bioinformatics, 10(2):323–336, 2013. https://doi.org/10.1109/TCBB.2012.125. (Crossref)

T. Newman and H. Yi. A survey of the marching cubes algorithm. Computers and Graphics, 30(5):854–879, 2006. https://doi.org/10.1016/j.cag.2006.07.021. (Crossref)

G. M. Nielson. On marching cubes. IEEE Trans. Vis. and Comp. Graphics, 9(3):283–297, July 2003. https://doi.org/10.1109/TVCG.2003.1207437. (Crossref)

Y. Omori, T. Murakami, and T. Ikeda. Color universal design without restricting colors and their combinations using lightness contrast dithering. In Proc. 5th Int. Congress of Int. Assoc. of Societies of Design Res. IASDR 2013, 2013. Paper No. 2227-1. http://design-cu.jp/iasdr2013/papers/2227-1b.pdf.

OSU (MSU/WSU) range image database. http://web.archive.org/web/19991008150305/ http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/. Accessed: October 23, 2016.

S. Roettger. The Volume Library. http://schorsch.efi.fh-nuernberg.de/data/volume/. Accessed: September 22, 2015.

B. Schlei. A new computational framework for 2D shape-enclosing contours. Image and Vision Computing, 27(6):637–647, May 2009. https://doi.org/10.1016/j.imavis.2008.06.014. (Crossref)

D. Siedhoff, F. Weichert, P. Libuschewski, and C. Timm. Detection and classification of nano-objects in biosensor data. In Proc. 6th Int. Workshop on Microscopic Image Analysis with Applications in Biology MIAAB 2011, Heidelberg, Germany, September 2011.

Z. Wang, J. K. Min, and G. Xiong. Robotics-driven printing of curved 3D structures for manufacturing cardiac therapeutic devices. In Proc. IEEE Int. Conf. Robotics and Biomimetics ROBIO 2015, pages 2318–2323, December 2015. https://doi.org/10.1109/ROBIO.2015.7419120. (Crossref)

D. Wu, H. Tian, G. Hao, et al. Design and realization of an interactive medical images three dimension visualization system. In Proc. 3rd Int. Conf. Biomedical Engineering and Informatics BMEI 2010, volume 1, pages 189–193, Oct 2010. https://doi.org/10.1109/BMEI.2010.5639435. (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Similar Articles

You may also start an advanced similarity search for this article.