Main Article Content
Human iris classification remains an active research area in the fields of biometrics as well as computer vision. In iris biometrics, most of the visible or near-infrared (NIR) eye images suffer from multiple noise sources, and the dispersive spectrum changes hugely. These changes occur due to spattering, albedo, and spectrum absorbance selectively. However, accurate iris classification for distance images is still a challenging task. To solve it effectively, we propose a machine learning (ML)-based iris classification employing a dense feature extraction method with various distance metrics. More specifically, this learning model focuses on the Histogram of Oriented Gradients (HOG) descriptor and K-Nearest Neighbour (K-NN) classifier with various distance metrics. The HOG descriptor has some advantages for this proposed distant-based iris classification, for example, insensitive to multiple lighting and noises, shift invariance, capacity to tolerate iris variations within the classes, etc. Additionally, this study investigates the most reliable distance metric that is less affected by different levels of noise. A publicly accessible CASIA-V4 distance image database is conducted for the experimental evaluation. To evaluate the performance of the classification models, we consider different measures such as recall, precision, F1-scores, and accuracy. The reported results are tabulated as well as optimized through Receiver Operating Characteristic (ROC) curves. The experimental results demonstrate that the Canberra distance metric with low dimensional HOG features provides better recognition accuracy (90.55%) compared to other distance metrics.
Article Details
E. Acar. Extraction of texture features from local iris areas by GLCM and iris recognition system based on KNN. European Journal of Technic 6(1):44-52. 2016. https://api.semanticscholar.org/CorpusID:209081348.
S. Ahmad and B. Fuller. Unconstrained iris segmentation using convolutional neural networks. In: Computer Vision - Proc. 14th Asian Conference on Computer Vision (ACCV) 2018 Workshops, vol. 11367 of Lecture Notes in Computer Science, pp. 450-466. 2019. https://doi.org/10.1007/978-3-030-21074-8_36. (Crossref)
A. S. Al-Waisy, R. Qahwaji, S. Ipson, S. Al-Fahdawi, and T. A. Nagem. A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications 21(3):783-802. 2018. https://doi.org/10.1007/s10044-017-0656-1. (Crossref)
H. S. Ali, A. I. Ismail, F. A. Farag, and F. E. A. El-Samie. Speeded up robust features for efficient iris recognition. Signal, Image and Video Processing 10:1385-1391. 2016. https://doi.org/10.1007/s11760-016-0903-8. (Crossref)
L. E. Ali, J. Luo, and J. Ma. Iris recognition from distant images based on multiple feature descriptors and classifiers. In: Proc. 2016 IEEE 13th International Conference on Signal Processing (ICSP), pp. 1357-1362. IEEE. 2016. https://doi.org/10.1109/ICSP.2016.7878048. (Crossref)
L. E. Ali, J. Luo, and J. Ma. Effective iris recognition for distant images using log-gabor wavelet based contourlet transform features. In: Proc. 13th International Conference on Intelligent Computing Theories and Application (ICIC), vol. 10361 of Lecture Notes in Computer Science, pp. 293-303. 2017. https://doi.org/10.1007/978-3-319-63309-1_27. (Crossref)
A. Azizi and H. R. Pourreza. A new method for iris recognition based on contourlet transform and non linear approximation coefficients. In: Emerging Intelligent Computing Technology and Applications - Proc. 5th International Conference on Intelligent Computing (ICIC), vol. 5754 of Lecture Notes in Computer Science, pp. 307-316. 2009. https://doi.org/10.1007/978-3-642-04070-2_35. (Crossref)
B. V. Bharath, A. S. Vilas, K. Manikantan, and S. Ramachandran. Iris recognition using radon transform thresholding based feature extraction with gradient-based isolation as a pre-processing technique. In: Proc. 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1-8. 2014. https://doi.org/10.1109/ICIINFS.2014.7036572. (Crossref)
B. Connor and K. Roy. Iris recognition using level set and local binary pattern. International Journal of Computer Theory and Engineering 6(5):416-420. 2014. https://doi.org/10.7763/IJCTE.2014.V6.901. (Crossref)
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In: Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886-893. 2005. https://doi.org/10.1109/CVPR.2005.177. (Crossref)
J. Daugman. How iris recognition works. In: A. Bovik (Ed.), The Essential Guide to Image Processing, chap. 5, pp. 715-739. Elsevier. 2009. https://doi.org/10.1016/B978-0-12-374457-9.00025-1. (Crossref)
W. Dong, Z. Sun, and T. Tan. Iris matching based on personalized weight map. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(9):1744-1757. 2011. https://doi.org/10.1109/TPAMI.2010.227. (Crossref)
W. El-Tarhouni, A. Abdo, and A. Elmegreisi. Feature fusion using the Local Binary Pattern Histogram Fourier and the Pyramid Histogram of Feature fusion using the Local Binary Pattern Oriented Gradient in iris recognition. In: Proc. 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), pp. 853-857. 2021. https://doi.org/10.1109/MI-STA52233.2021.9464473. (Crossref)
C. Fancourt, L. Bogoni, K. Hanna, Y. Guo, R. Wildes, et al. Iris recognition at a distance. In: Proc. 5th International Conference on Audio-and Video-Based Biometric Person Authentication (AVBPA), vol. 3546 of Lecture Notes in Computer Science, pp. 1-13. Springer. 2005. https://doi.org/10.1007/11527923_1. (Crossref)
A. Gangwar, A. Joshi, A. Singh, F. Alonso-Fernandez, and J. Bigun. IrisSeg: A fast and robust iris segmentation framework for non-ideal iris images. In: Proc. 2016 International Conference on Biometrics (ICB), pp. 1-8. IEEE. 2016. https://doi.org/10.1109/ICB.2016.7550096. (Crossref)
L. George and E. Saad. Iris recognition based on the low order norms of gradient components. International Journal of Computer and Information Engineering 8(8):1240-1246. 01 2014. https://publications.waset.org/9999069.pdf.
M. H. Hamd, S. K. Ahmed, et al. Biometric system design for iris recognition using intelligent algorithms. International Journal of Modern Education and Computer Science 10(3):9-16. 2018. https://doi.org/10.5815/ijmecs.2018.03.02. (Crossref)
K. P. Hollingsworth, K. W. Bowyer, and P. J. Flynn. The best bits in an iris code. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(6):964-973. 2009. https://doi.org/10.1109/TPAMI.2008.185. (Crossref)
Y. Hu, K. Sirlantzis, and G. Howells. Improving colour iris segmentation using a model selection technique. Pattern Recognition Letters 57:24-32. 2015. https://doi.org/10.1016/j.patrec.2014.12.012. (Crossref)
M. Z. Islam, S. Nahar, S. S. Islam, S. Islam, A. Mukherjee, et al. Customized K-Means clustering based color image segmentation measuring PRI. In: Proc. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), pp. 1-4. IEEE. 2021. https://doi.org/10.1109/ICECIT54077.2021.9641094. (Crossref)
M. E. Kadir, P. S. Akash, S. Sharmin, A. A. Ali, and M. Shoyaib. A proximity weighted evidential k nearest neighbor classifier for imbalanced data. In: Advances in Knowledge Discovery and Data Mining - Proc. 24th Pacific-Asia Conference (PAKDD), vol. 12085 of Lecture Notes in Computer Science, pp. 71-83. 2020. https://doi.org/10.1007/978-3-030-47436-2_6. (Crossref)
A. Kumar and T.-S. Chan. Iris recognition using quaternionic sparse orientation code (QSOC). In: Proc. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 59-64. 2012. https://doi.org/10.1109/CVPRW.2012.6239216. (Crossref)
A. Kumar, T.-S. Chan, and C.-W. Tan. Human identification from at-a-distance face images using sparse representation of local iris features. In: Proc. 2012 5th IAPR International Conference on Biometrics (ICB), pp. 303-309. 2012. https://doi.org/10.1109/ICB.2012.6199824. (Crossref)
C. Li, W. Zhou, and S. Yuan. Iris recognition based on a novel variation of local binary pattern. The Visual Computer 31(10):1419-1429. 2015. https://doi.org/10.1007/s00371-014-1023-5. (Crossref)
P. Li, X. Liu, and N. Zhao. Weighted co-occurrence phase histogram for iris recognition. Pattern Recognition Letters 33(8):1000-1005. 2012. https://doi.org/10.1016/j.patrec.2011.06.018. (Crossref)
Y.-H. Li, W. R. Putri, M. S. Aslam, and C.-C. Chang. Robust iris segmentation algorithm in non-cooperative environments using interleaved residual U-Net. Sensors 21(4):1434. 2021. https://doi.org/10.3390/s21041434. (Crossref)
J. Liu, Z. Sun, and T. Tan. Distance metric learning for recognizing low-resolution iris images. Neurocomputing 144:484-492. 2014. https://doi.org/10.1016/j.neucom.2014.05.016. (Crossref)
B. Madhu, A. Mukherjee, M. Z. Islam, G. Mamun-Al-Imran, R. Roy, et al. Depth motion map based human action recognition using adaptive threshold technique. In: Proc. 2021 5th International Conference on Electrical Information and Communication Technology (EICT), pp. 1-6. 2021. https://doi.org/10.1109/EICT54103.2021.9733611. (Crossref)
A. Mukherjee, M. Z. Islam, G. Mamun-Al-Imran, and L. E. Ali. Iris recognition using wavelet features and various distance based classification. In: Proc. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), pp. 1-4. 2021. https://doi.org/10.1109/ICECIT54077.2021.9641118. (Crossref)
A. Mukherjee, M. Z. Islam, R. Roy, and L. E. Ali. Block-based local binary patterns for distant iris recognition using various distance metrics. International Journal of Image, Graphics and Signal Processing 16(3):83-99. 2024. https://doi.org/10.5815/ijigsp.2024.03.07. (Crossref)
A. Mukherjee, K. S. N. Ripon, L. E. Ali, Z. Islam, and G. Mamun-Al-Imran. Image gradient based iris recognition for distantly acquired face images using distance classifiers. In: Computational Science and Its Applications - Proc. ICCSA Workshops, vol. 13381 of Lecture Notes in Computer Science, pp. 239-252. 2022. https://doi.org/10.1007/978-3-031-10548-7_18. (Crossref)
H. Proenca. Iris recognition: On the segmentation of degraded images acquired in the visible wavelength. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8):1502-1516. 2010. https://doi.org/0.1016/j.dsp.2017.02.003. (Crossref)
A. Radman, N. Zainal, and S. A. Suandi. Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut. Digital Signal Processing 64:60-70. 2017. https://doi.org/10.1016/j.dsp.2017.02.003. (Crossref)
K. S. N. Ripon, L. E. Ali, N. Siddique, and J. Ma. Convolutional neural network based eye recognition from distantly acquired face images for human identification. In: Proc. 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. 2019. https://doi.org/10.1109/IJCNN.2019.8852190. (Crossref)
M. Salauddin Khan, T. D. Nath, M. Murad Hossain, A. Mukherjee, H. Bin Hasnath, et al. Comparison of multiclass classification techniques using dry bean dataset. International Journal of Cognitive Computing in Engineering 4:6-20. 2023. https://doi.org/10.1016/j.ijcce.2023.01.002. (Crossref)
M. Sardar, S. Banerjee, and S. Mitra. Iris segmentation using interactive deep learning. IEEE Access 8:219322-219330. 2020. https://doi.org/10.1109/ACCESS.2020.3041519. (Crossref)
Y. Sari, M. Alkaff, and R. A. Pramunendar. Iris recognition based on distance similarity and PCA. In: Human-Dedicated Sustainable Product and Process Design: Materials, Resources, and Energy: Proc. 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2017, vol. 1977(1) of AIP Conference Proceedings, p. 020044. 2018. https://doi.org/10.1063/1.5042900.
S. N. Sarode and A. M. Patil. Iris recognition using LBP with classifiers-KNN and NB. International Journal of Science and Research 4(1):1904-1908. 2015. https://www.ijsr.net/getabstract.php?paperid=SUB15735.
M. Savoj and S. A. Monadjemi. Iris localization using circle and fuzzy circle detection method. International Journal of Computer and Information Engineering 6(1):91-93. 2012. https://publications.waset.org/1468.pdf.
E. Severo, R. Laroca, C. S. Bezerra, L. A. Zanlorensi, D. Weingaertner, et al. A benchmark for iris location and a deep learning detector evaluation. In: Proc. 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1-7. 2018. https://doi.org/10.1109/IJCNN.2018.8489638. (Crossref)
M. Szymkowski, P. Jasiński, and K. Saeed. Iris-based human identity recognition with machine learning methods and discrete fast fourier transform. Innovations in Systems and Software Engineering 17:309-317. 2021. https://doi.org/10.1007/s11334-021-00392-9. (Crossref)
C.-W. Tan and A. Kumar. Unified framework for automated iris segmentation using distantly acquired face images. IEEE Transactions on Image Processing 21(9):4068-4079. 2012. https://doi.org/10.1109/TIP.2012.2199125. (Crossref)
C.-W. Tan and A. Kumar. Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Transactions on Image Processing 22(10):3751-3765. 2013. https://doi.org/10.1109/TIP.2013.2260165. (Crossref)
C.-W. Tan and A. Kumar. Accurate iris recognition at a distance using stabilized iris encoding and Zernike moments phase features. IEEE Transactions on Image Processing 23(9):3962-3974. 2014. https://doi.org/10.1109/TIP.2014.2337714. (Crossref)
T. Tan and Z. Sun. CASIA Iris Image Database. http://biometrics.idealtest.org/#/datasetDetail/4. V. 4 [Accessed: 2018-06-16].
S. Umer, B. C. Dhara, and B. Chanda. An iris recognition system based on analysis of textural edgeness descriptors. IETE Technical Review 35(2):145-156. 2018. https://doi.org/10.1080/02564602.2016.1265904. (Crossref)
C. Wang, J. Muhammad, Y. Wang, Z. He, and Z. Sun. Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition. IEEE Transactions on Information Forensics and Security 15:2944-2959. 2020. https://doi.org/10.1109/TIFS.2020.2980791. (Crossref)
Q. Zhang, H. Li, Z. Sun, and T. Tan. Deep feature fusion for iris and periocular biometrics on mobile devices. IEEE Transactions on Information Forensics and Security 13(11):2897-2912. 2018. https://doi.org/10.1109/TIFS.2018.2833033. (Crossref)