Main Article Content
Data augmentation is a popular approach to overcome the insufficiency of training data for medical imaging. Classical augmentation is based on modification (rotations, shears, brightness changes, etc.) of the images from the original dataset. Another possible approach is the usage of Generative Adversarial Networks (GAN). This work is a continuation of the previous research where we trained StyleGAN2-ADA by Nvidia on the limited COVID-19 chest X-ray image dataset. In this paper, we study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples. Two datasets are considered, one with 1000 images per class (4000 images in total) and the second with 500 images per class (2000 images in total). We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems. We compare the quality of the GAN-based augmentation approach to two different approaches (classical augmentation and no augmentation at all) by employing transfer learning-based classification of COVID-19 chest X-ray images. The results are quantified using different classification quality metrics and compared to the results from the previous article and literature. The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets. The correlation between the size of the original dataset and the quality of classification is visible independently from the augmentation approach.
Article Details
S. Albahli. Efficient GAN-based chest radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia. International Journal of Medical Sciences, 17(10):1439-1448, 2020. https://doi.org/10.7150/ijms.46684. (Crossref)
H. X. Bai, B. Hsieh, Z. Xiong, K. Halsey, J. W. Choi, et al. Performance of radiologists in differentiating COVID-19 from non-COVID-19 viral pneumonia at chest CT. Radiology, 296(2):E46-E54, Aug 2020. https://doi.org/10.1148/radiol.2020200823. (Crossref)
M. Bali and T. Mahara. Comparison of affine and DCGAN-based data augmentation techniques for chest X-ray classification. Procedia Computer Science, 218:283-290, 2023. International Conference on Machine Learning and Data Engineering. https://doi.org/10.1016/j.procs.2023.01.010. (Crossref)
M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD GANs. In: Proc. Int. Conf. Learning Representations (ICRL 2018), 2018. https://openreview.net/forum?id=r1lUOzWCW.
C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, et al. GAN augmentation: Augmenting training data using Generative Adversarial Networks. arXiv, 2018. ArXiv.1810.10863. https://arxiv.org/abs/1810.10863.
M. J. Chong and D. Forsyth. Effectively unbiased FID and inception score and where to find them. In: Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6069-6078, 2020. https://doi.org/10.1109/CVPR42600.2020.00611. (Crossref)
D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUs). In: Proc. Int. Conf. Learning Representations (ICLR 2016), 2016. https://arxiv.org/abs/1511.07289.
J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Duong, et al. COVID-19 image data collection: Prospective predictions are the future. Machine Learning for Biomedical Imaging, 1:1-38, 2020. https://doi.org/10.59275/j.melba.2020-48g7. (Crossref)
D. Ezzat, A. E. Hassanien, and H. A. Ella. An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization. Applied Soft Computing, 98:106742, Jan 2021. https://doi.org/10.1016/j.asoc.2020.106742. (Crossref)
O. Fedoruk, K. Klimaszewski, A. Ogonowski, and R. Możdżonek. Performance of GAN-based augmentation for deep learning COVID-19 image classification. In: Proc. Int. Workshop on Machine Learning and Quantum Computing Applications in Medicine and Physics. Warsaw, Poland, 13-16 Sep 2022. Accepted for publication in AIP Conference Proceedings. https://events.ncbj.gov.pl/event/141/page/65-home.
M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, et al. Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification. Neurocomputing, 321:321–331, Dec 2018. https://doi.org/10.1016/j.neucom.2018.09.013. (Crossref)
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, et al. Generative adversarial networks. Advances in Neural Information Processing Systems, 3, 06 2014. https://doi.org/10.1145/3422622. (Crossref)
W. Gouda, M. Almurafeh, M. Humayun, and N. Z. Jhanjhi. Detection of COVID-19 based on chest X-rays using deep learning. Healthcare, 10(2):343, 2022. https://doi.org/10.3390/healthcare10020343. (Crossref)
O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang, et al. Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using Deep Learning CT image analysis. arXiv, 2020. ArXiv.2003.05037. https://doi.org/10.48550/arXiv.2003.05037.
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, et al., eds., Advances in Neural Information Processing Systems: Proc. NIPS 2017, vol. 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html.
Md. I. Zabirul, Md. I. Milon, and A. Asraf. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Informatics in Medicine Unlocked, 20:100412, 2020. https://doi.org/10.1016/j.imu.2020.100412. (Crossref)
InceptionV3 - Keras Applications API Reference. https://keras.io/api/applications/inceptionv3/, [Accessed Dec 2023].
J. Jeong, A. Tariq, T. Adejumo, H. Trivedi, J. Gichoya, et al. Systematic review of generative adversarial networks (GANs) for medical image classification and segmentation. Journal of Digital Imaging, 35, 01 2022. https://doi.org/10.1007/s10278-021-00556-w. (Crossref)
T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, et al. Training generative adversarial networks with limited data. In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds., Advances in Neural Information Processing Systems: Proc. NeurIps 2020, vol. 33, pp. 12104-12114. Curran Associates, Inc., 2020. https://proceedings.neurips.cc/paper_files/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html.
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, et al. Analyzing and improving the image quality of StyleGAN. In: Proc. CVPR, 2020. arXiv.1912.04958, https://arxiv.org/abs/1912.04958. (Crossref)
D. Kermany. Labeled optical coherence tomography (oct) and chest X-ray images for classification. Mendeley Data, V2, 2018. https://doi.org/10.17632/rscbjbr9sj.2.
D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122-1131.e9, Feb 2018. https://doi.org/10.1016/j.cell.2018.02.010. (Crossref)
A. I. Khan, J. L. Shah, and M. M. Bhat. Coronet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Computer Methods and Programs in Biomedicine, 196:105581, Nov 2020. https://doi.org/10.1016/j.cmpb.2020.105581. (Crossref)
E. Khan, M. Z. U. Rehman, F. Ahmed, F. A. Alfouzan, N. M. Alzahrani, et al. Chest X-ray classification for the detection of COVID-19 using deep learning techniques. Sensors, 22(3):1211, 2022. https://doi.org/10.3390/s22031211. (Crossref)
J. Li, G. Zhu, C. Hua, M. Feng, B. Bennamoun, et al. A systematic collection of medical image datasets for deep learning. ACM Computing Surveys, 56(5), nov 2023. https://doi.org/10.1145/3615862. (Crossref)
S. Motamed, P. Rogalla, and F. Khalvati. Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of pneumonia and COVID-19 in chest X-ray images. Informatics in Medicine Unlocked, 27:100779, 2021. https://doi.org/10.1016/j.imu.2021.100779. (Crossref)
S. Motamed, P. Rogalla, and F. Khalvati. RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray. Scientific Reports, 11(1):8602, Apr 2021. https://doi.org/10.1038/s41598-021-87994-2. (Crossref)
A. Narin, C. Kaya, and Z. Pamuk. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications, 24(3):1207-1220, May 2021. https://doi.org/10.1007/s10044-021-00984-y. (Crossref)
A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier GANs. In: D. Precup and Y. W. Teh, eds., Proc. 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research, pp. 2642-2651. PMLR, 06-11 Aug 2017. https://proceedings.mlr.press/v70/odena17a.html.
T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132:104319, 2021. https://doi.org/10.1016/j.compbiomed.2021.104319. (Crossref)
RMSprop - Keras Optimizers API Reference. https://keras.io/api/optimizers/rmsprop/, [Accessed Dec 2023].
G. D. Rubin, C. J. Ryerson, L. B. Haramati, N. Sverzellati, J. P. Kanne, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the fleischner society. Chest, 158(1):106-116, Jul 2020. https://doi.org/10.1016/j.chest.2020.04.003. (Crossref)
W. Saad, W. A. Shalaby, M. Shokair, F. A. El-Samie, M. Dessouky, et al. COVID-19 classification using deep feature concatenation technique. Jornal of Ambient Intelligence and Humanized Computing, 13(4):2025-2043, 2022. https://doi.org/10.1007/s12652-021-02967-7. (Crossref)
K. Sahinbas and F. O. Catak. Transfer learning-based convolutional neural network for COVID-19 detection with X-ray images. In: U. Kose, D. Gupta, V. H. C. de Albuquerque, and A. Khanna, eds., Data Science for COVID-19 - Computational Prespective, chap. 24, pp. 451-466. Academic Press, 2021. https://doi.org/10.1016/B978-0-12-824536-1.00003-4. (Crossref)
H. Salehinejad, S. Valaee, T. Dowdell, E. Colak, and J. Barfett. Generalization of deep neural networks for chest pathology classification in X-rays using Generative Adversarial Networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990-994, 2018. https://doi.org/10.1109/ICASSP.2018.8461430. (Crossref)
C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):60, 2019. https://doi.org/10.1186/s40537-019-0197-0. (Crossref)
N. K. Singh and K. Raza. Medical Image Generation Using Generative Adversarial Networks: A Review, pp. 77-96. Springer Singapore, 2021. https://doi.org/10.1007/978-981-15-9735-0_5. (Crossref)
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. In: 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2818-2826, 2016. https://doi.org/10.1109/CVPR.2016.308. (Crossref)
R. Venugopal, N. Shafqat, I. Venugopal, B. M. J. Tillbury, H. D. Stafford, et al. Privacy preserving generative adversarial networks to model electronic health records. Neural Networks, 153:339-348, 2022. https://doi.org/10.1016/j.neunet.2022.06.022. (Crossref)
A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, et al. CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access, 8:91916-91923, 2020. https://doi.org/10.1109/ACCESS.2020.2994762. (Crossref)
S. E. Whang, Y. Roh, H. Song, and J.-G. Lee. Data collection and quality challenges in deep learning: A data-centric AI perspective. The VLDB Journal, 32(4):791-813, 2023. https://doi.org/10.1007/s00778-022-00775-9. (Crossref)
X. Xu, X. Jiang, C. Ma, P. Du, X. Li, et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering, 6(10):1122-1129, 2020. https://doi.org/10.1016/j.eng.2020.04.010. (Crossref)
X. Yi, E. Walia, and P. Babyn. Generative adversarial network in medical imaging: A review. Medical Image Analysis, 58:101552, 2019. https://doi.org/https://doi.org/10.1016/j.media.2019.101552. (Crossref)
Downloads
- Jarosław Kurek, Joanna Aleksiejuk-Gawron, Izabella Antoniuk, Jarosław Górski, Albina Jegorowa, Michał Kruk, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, Grzegorz Wieczorek, Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jarosław Kurek, Joanna Aleksiejuk-Gawron, Izabella Antoniuk, Jarosław Górski, Albina Jegorowa, Michał Kruk, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, Grzegorz Wieczorek, Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Grzegorz Wieczorek, Izabella Antoniuk, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, BCT Boost Segmentation with U-net in TensorFlow , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Karol Talacha, Izabella Antoniuk, Leszek Chmielewski, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Jakub Pach, Andrzej Półtorak, Bartosz Świderski, Grzegorz Wieczorek, Context-based segmentation of the longissimus muscle in beef with a deep neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jakub Pach, Izabella Antoniuk, Leszek Chmielewski, Jarosław Górski, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Katarzyna Śmietańska, Bartosz Świderski, Grzegorz Wieczorek, Textural features based on run length encoding in the classification of furniture surfaces with the orange skin defect , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)