Main Article Content
Article Details
P.V.C. Hough. Machine analysis of bubble chamber pictures. In Proc. Int. Conf. on High Energy Accelerators and Instrumentation. CERN, 1959.
P.V.C. Hough. A method and means for recognizing complex patterns. U. S. Patent 3.069.654, 1962.
M.L. Stein, S.M. Ulam, and M.B. Wells. A visual display of some properties of the distribution of primes. The American Mathematical Monthly, 71(5):516–520, 1964. https://doi.org/10.2307/2312588. (Crossref)
R.D. Duda and P.E. Hart. Use of the Hough transform to detect lines and curves in pictures. Comm. Assoc. of Computing Machinery, 15:11–15, 1972. (Crossref)
R.S. Wallace. A modified Hough transform for lines. In Proc. IEEE Comput. Soc. Conf. on Comput. Vision and Patt. Recogn. CVPR ’85, pages 665–667, San Francisco, USA, 1985.
J. Illingworth and J. Kittler. A survey of the Hough transform. Comp. Vision, Graph., and Image Proc., 44(1):87–116, 1988. doi:10.1016/S0734-189X(88)80033-1. (Crossref)
V.F. Leavers. Which Hough transform? CVGIP: Image Understanding, 58:250–264, 1993. https://doi.org/10.1006/ciun.1993.1041. (Crossref)
H. Rudd. Ulamspiral.com. http://ulamspiral.com. 2007.
P. Meer. Robust techniques for computer vision. In G. Medioni and S.B. Kang, editors, Emerging Topics in Computer Vision, pages 107–190. Prentice Hall, 2004.
L.J. Chmielewski. Metody akumulacji danych w analizie obrazów cyfrowych. Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2006. http://www.lchmiel.pl/akum06.
D. Antolovic. Review of the Hough transform method, with an implementation of the fast Hough variant for line detection. Department of Computer Science, Indiana University, 2008.
Downloads
- Jarosław Kurek, Joanna Aleksiejuk-Gawron, Izabella Antoniuk, Jarosław Górski, Albina Jegorowa, Michał Kruk, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, Grzegorz Wieczorek, Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jarosław Kurek, Joanna Aleksiejuk-Gawron, Izabella Antoniuk, Jarosław Górski, Albina Jegorowa, Michał Kruk, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, Grzegorz Wieczorek, Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jarosław Kurek, Karol Szymanowski, Leszek Chmielewski, Arkadiusz Orłowski, Advancing chipboard milling process monitoring through spectrogram-based time series analysis with Convolutional Neural Network using pretrained networks , Machine Graphics and Vision: Vol. 32 No. 2 (2023)
- Grzegorz Wieczorek, Izabella Antoniuk, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, BCT Boost Segmentation with U-net in TensorFlow , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Karol Talacha, Izabella Antoniuk, Leszek Chmielewski, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Jakub Pach, Andrzej Półtorak, Bartosz Świderski, Grzegorz Wieczorek, Context-based segmentation of the longissimus muscle in beef with a deep neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jakub Pach, Izabella Antoniuk, Leszek Chmielewski, Jarosław Górski, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Katarzyna Śmietańska, Bartosz Świderski, Grzegorz Wieczorek, Textural features based on run length encoding in the classification of furniture surfaces with the orange skin defect , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Grzegorz Gawdzik, Arkadiusz Orłowski, Liquid detection and instance segmentation based on Mask R-CNN in industrial environment , Machine Graphics and Vision: Vol. 32 No. 3/4 (2023)
- Maciej Janowicz, Joanna Kaleta, Arkadiusz Orłowski, Piotr Wrzeciono, Andrzej Zembrzuski, Visualization of nonlocality in coupled map lattices , Machine Graphics and Vision: Vol. 25 No. 1/4 (2016)