Visualization of nonlocality in coupled map lattices

Main Article Content

Maciej Janowicz
Joanna Kaleta
Arkadiusz Orłowski
Piotr Wrzeciono
Andrzej Zembrzuski


Keywords : coupled map lattices, nonlocality, density matrix, visualization
Abstract
Numerical simulations of coupled map lattices with various degree of nonlocality have been performed. Quantitative characteristics of recently introduced for local coupling have been applied in the nonlocal case. It has been attempted to draw qualitative conclusions about nonlocality from the emerging pictures.

Article Details

How to Cite
Janowicz, M., Kaleta, J., Orłowski, A., Wrzeciono, P., & Zembrzuski, A. (2016). Visualization of nonlocality in coupled map lattices. Machine Graphics and Vision, 25(1/4), 13–25. https://doi.org/10.22630/MGV.2016.25.1.2
References

Dynamics of Coupled Map Lattices and Related Spatially Extended Systems. J.R. Chazottes and B. Fernandez (Eds.), Springer, New York, 2005.

Ilachinski A. Cellular Automata. A Discrete Universe. World Scientific, Singapore 2001. (Crossref)

Kaneko K. Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice: towards a prelude of a “Field theory of chaos”. Prog. Theor. Phys. 72:480-486, 1984. (Crossref)

Waller I. and Kapral R. Spatial and temporal structure in systems of coupled nonlinear oscillators. Phys. Rev. A 31:2047-2055, 1984. (Crossref)

Kapral R. Pattern formation in two-dimensional arrays of coupled, discrete-time oscillators. Phys. Rev. A 31:3868-3879, 1985. (Crossref)

Kaneko K. Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency. Physica D 34:1-41, 1989. (Crossref)

Yanagita T. and Kaneko K. Rayleigh-Benard convection patterns, chaos, spatiotemporal chaos and turbulence. Physica D 82:288-313, 1995. (Crossref)

Yanagita T. Coupled map lattice model of boiling Phys. Lett. A 165:405-408, 1992. (Crossref)

Yanagita T. and Kaneko K. Modeling and characterization of cloud dynamics Phys. Rev. Lett. 78:4297-4300, 1997. (Crossref)

Kaneko K. In: Pattern Dynamics, Information Flow, and Thermodynamics of Spatiotemporal Chaos. K. Kawasaki, A. Onuki, and M. Suzuki (Eds.), World Scientific, Singapore 1990.

Muruganandam P., Francisco F., de Menezes M., and Ferreira F.F. Chaos, Solitons and Fractals 41:997, 2009. (Crossref)

Abrams D.M. and Strogatz S.H. Chimera states for coupled oscillators. Phys. Rev. Lett. 93:174102, 2004. (Crossref)

Omelchenko I., Maistrenko Y., Hovel P. and Scholl E. Loss of coherence in dynamical networks: spatial chaos and chimera states. arXiv:1102.4709v2 nlin.AO.

Panaggio M.J. and Abrams D.M. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28:R67-R87, 2015. (Crossref)

Maistrenko Y., Sudakov. O., Osiv. O, and Maistrenko V. Chimera states in three dimensions. New J. Phys. 17:073037, 2015. (Crossref)

Janowicz M. and Or lowski A. Coherence and large-scale pattern formation in coupled logistic-map lattices via computer algbera systems. In Computer Algebra in Scientific Computing. CASC 2014, V. Gerdt, W. Koepf and W.M. Seiler (Eds.), pp. 230-241. Lecture Notes in Computer Science, vol. 8660, 2014. (Crossref)

Statistics
Recommend Articles
Most read articles by the same author(s)