Main Article Content
The goal of the paper is to present an efficient approach to detect and instantiate liquid spilled in the industrial and industrial-like environments. Motivation behind it is to enable mobile robots to automatically detect and collect samples of spilled liquids. Due to the lack of useful training data of spilled substances, a new dataset with RGB images and masks was gathered. A new application of the Mask-RCNN-based algorithm is proposed which has the functionalities of detecting the spilled liquid and segmenting the image.
Article Details
awsaf49. COCO 2017 Dataset, 2017. https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset, [Accessed: May 2023].
A.-A. Dalal, Y. Shao, A. Alalimi, and A. Abdu. Mask R-CNN for geospatial object detection. International Journal of Information Technology and Computer Science (IJITCS), 12(5):63-72, 2020. https://doi.org/10.5815/ijitcs.2020.05.05. (Crossref)
G. Gawdzik. Liquid dataset. PIAP Cloud Resources, 2023. https://cloud.piap.pl/index.php/s/ApiXNzt4ZUUSRks, [Accessed: 10 Dec 2023].
G. Gawdzik. Table of results for all runs of the liquid detection. PIAP Cloud Resources, 2023. https://cloud.piap.pl/index.php/s/cE3mJ8CrCYWUkJ9, [Accessed: 10 Dec 2023].
K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In: Proc. 2017 IEEE international Conference on Computer Vision (ICCV), pp. 2980-2988. Venice, Italy, 22-29 Oct 2017. https://doi.org/10.1109/ICCV.2017.322. (Crossref)
W. Jia, Y. Tian, R. Luo, Z. Zhang, J. Lian, et al. Detection and segmentation of overlapped fruits based on optimized Mask R-CNN application in apple harvesting robot. Computers and Electronics in Agriculture, 172:105380, 2020. https://doi.org/10.1016/j.compag.2020.105380. (Crossref)
H. Jung, B. Lodhi, and J. Kang. An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomedical Engineering, 1:24, 2019. https://doi.org/10.1186/s42490-019-0026-8. (Crossref)
T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al. Detecion Evaluation. In: COCO. Common Objects in Context [10]. [Accessed: Dec 2023]. https://cocodataset.org/#detection-eval.
T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al. Microsoft COCO: Common Objects in Context. arXiv, 2015. ArXiv.1405.0312. https://doi.org/10.48550/arXiv.1405.0312.
T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, et al., eds. COCO. Common Objects in Context, 2020. [Accessed May 2023], https://cocodataset.org.
Anaconda, Inc. Conda Documentation, 2023. https://docs.conda.io, [Accessed: 10 Dec 2023].
CVAT.ai Corporation. CVAT Open Data Annotation Platform, 2023. https://www.cvat.ai, [Accessed: 10 Dec 2023].
PyTorch Foundation, a project of The Linux Foundation. PyTorch Get Started, 2023. https://pytorch.org/, [Accessed: 10 Dec 2023].
TorchVision maintainers and contributors. TorchVision: PyTorch's Computer Vision library. GitHub repository, 2016. https://github.com/pytorch/vision, [Accessed: Jun 2023].
R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(36):1-13, 2017. https://doi.org/10.1186/s13040-017-0154-4. (Crossref)
J. van Rijn, J. Vanschoren, B. Bischl, M. Feurer, G. Casalicchio, et al. OpenML Datasets. https://www.openml.org/search?type=data, [Accessed: Dec 2023].
J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. Penn Machine Learning Benchmarks. https://epistasislab.github.io/pmlb/.
J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. PMLB v1.0: an open-source dataset collection for benchmarking machine learning methods. Bioinformatics, 38(3):878-880, 2021. https://doi.org/10.1093/bioinformatics/btab727.
J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, et al. PMLB v1.0: an open source dataset collection for benchmarking machine learning methods. arXiv, 2021. ArXiv:2012.00058v2. https://doi.org/10.48550/arXiv.2012.00058. (Crossref)
D. Sculley, J. Moser, W. Cukierski, J. Rose, M. O'Connell, et al. Kaggle Datasets, 2023. https://www.kaggle.com/datasets, [Accessed: Jan 2023].
S. Sibirtsev, S. Zhai, M. Neufang, J. Seiler, and A. Jupke. Mask R-CNN based droplet detection in liquid-liquid systems, Part 2: Methodology for determining training and image processing parameter values improving droplet detection accuracy. Chemical Engineering Journal, 473:144826, 2023. https://doi.org/10.1016/j.cej.2023.144826. (Crossref)
H. Su, S. Wei, M. Yan, C. Wang, J. Shi, et al. Object detection and instance segmentation in remote sensing imagery based on precise Mask R-CNN. In: Proc. 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1454-1457. Yokohama, Japan, 28 Jul - 2 Aug 2019. https://doi.org/10.1109/IGARSS.2019.8898573. (Crossref)
P. Su, J. Joutsensaari, L. Dada, M. A. Zaidan, T. Nieminen, et al. New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 22(2):1293-1309, 2022. https://doi.org/10.5194/acp-22-1293-2022. (Crossref)
Downloads
- Jarosław Kurek, Joanna Aleksiejuk-Gawron, Izabella Antoniuk, Jarosław Górski, Albina Jegorowa, Michał Kruk, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, Grzegorz Wieczorek, Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jarosław Kurek, Joanna Aleksiejuk-Gawron, Izabella Antoniuk, Jarosław Górski, Albina Jegorowa, Michał Kruk, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, Grzegorz Wieczorek, Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jarosław Kurek, Karol Szymanowski, Leszek Chmielewski, Arkadiusz Orłowski, Advancing chipboard milling process monitoring through spectrogram-based time series analysis with Convolutional Neural Network using pretrained networks , Machine Graphics and Vision: Vol. 32 No. 2 (2023)
- Grzegorz Wieczorek, Izabella Antoniuk, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Jakub Pach, Bartosz Świderski, BCT Boost Segmentation with U-net in TensorFlow , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Leszek Chmielewski, Arkadiusz Orłowski, Hough transform for lines with slope defined by a pair of co-primes , Machine Graphics and Vision: Vol. 22 No. 1/4 (2013)
- Karol Talacha, Izabella Antoniuk, Leszek Chmielewski, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Jakub Pach, Andrzej Półtorak, Bartosz Świderski, Grzegorz Wieczorek, Context-based segmentation of the longissimus muscle in beef with a deep neural network , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Jakub Pach, Izabella Antoniuk, Leszek Chmielewski, Jarosław Górski, Michał Kruk, Jarosław Kurek, Arkadiusz Orłowski, Katarzyna Śmietańska, Bartosz Świderski, Grzegorz Wieczorek, Textural features based on run length encoding in the classification of furniture surfaces with the orange skin defect , Machine Graphics and Vision: Vol. 28 No. 1/4 (2019)
- Maciej Janowicz, Joanna Kaleta, Arkadiusz Orłowski, Piotr Wrzeciono, Andrzej Zembrzuski, Visualization of nonlocality in coupled map lattices , Machine Graphics and Vision: Vol. 25 No. 1/4 (2016)